scholarly journals Inversion analysis of carbon monoxide emissions using data from the TES and MOPITT satellite instruments

2007 ◽  
Vol 7 (6) ◽  
pp. 17625-17662 ◽  
Author(s):  
D. B. A. Jones ◽  
K. W. Bowman ◽  
J. A. Logan ◽  
C. L. Heald ◽  
J. Liu ◽  
...  

Abstract. We conduct an inverse modeling analysis of measurements of atmospheric CO from the TES and MOPITT satellite instruments using the GEOS-Chem global chemical transport model. This is the first quantitative analysis of the consistency of the information provided by these two instruments on surface emissions of CO in an inverse modeling context. We focus on observations of CO for November 2004, when the climatological emission inventory in the GEOS-Chem model significantly underestimated the atmospheric abundance of CO as observed by TES and MOPITT. We find that both datasets suggest significantly greater emissions of CO from sub-equatorial Africa and the Indonesian/Australian region. The a posteriori emissions from sub-equatorial Africa based on TES and MOPITT data were 173 Tg CO/yr and 184 Tg CO/yr, respectively, compared to the a priori of 95 Tg CO/yr. In the Indonesian/Australian region, the a posteriori emissions inferred from TES and MOPITT data were 155 Tg CO/yr and 185 Tg CO/yr, respectively, whereas the a priori was 69 Tg CO/yr. The differences between the a posteriori emission estimates obtained from the two datasets are generally less than 20%, and are likely due to the different spatio-temporal sampling of the measurements. The a posteriori emissions significantly improve the simulated distribution of CO, however, large regional residuals remain, reflecting systematic errors in the analysis. For example, the a posteriori emissions obtained from both datasets do not completely reduce the underestimate in the model of CO column abundances over the southern tropical Atlantic, southern Africa, and over the Indian Ocean, where biases of 3–7% remain. Over eastern Asia the a posteriori emissions overestimate the CO column abundances by about 3–6%. These residuals reflect the sensitivity of the top-down source estimates to systematic errors in the analysis. Our results indicate that improving the accuracy of top-down emission estimates will require further characterization of model biases (chemical and transport) and the use of spatial-temporal inversion resolutions consistent with the information content of the observations.

2009 ◽  
Vol 9 (11) ◽  
pp. 3547-3562 ◽  
Author(s):  
D. B. A. Jones ◽  
K. W. Bowman ◽  
J. A. Logan ◽  
C. L. Heald ◽  
J. Liu ◽  
...  

Abstract. We conduct an inverse modeling analysis of measurements of atmospheric CO from the TES and MOPITT satellite instruments using the GEOS-Chem global chemical transport model to quantify emissions of CO in the tropics in November 2004. We also assess the consistency of the information provided by TES and MOPITT on surface emissions of CO. We focus on the tropics in November 2004, during the biomass burning season, because TES observations of CO and O3 and MOPITT observations of CO reveal significantly greater abundances of these gases than simulated by the GEOS-Chem model during that period. We find that both datasets suggest substantially greater emissions of CO from sub-equatorial Africa and the Indonesian/Australian region than in the climatological emissions in the model. The a posteriori emissions from sub-equatorial Africa based on TES and MOPITT data were 173 Tg CO/yr and 184 Tg CO/yr, respectively, compared to the a priori of 95 Tg CO/yr. In the Indonesian/Australian region, the a posteriori emissions inferred from TES and MOPITT data were 155 Tg CO/yr and 185 Tg CO/yr, respectively, whereas the a priori was 69 Tg CO/yr. The differences between the a posteriori emission estimates obtained from the two datasets are generally less than 20%. The a posteriori emissions significantly improve the simulated distribution of CO, however, large regional residuals remain, and are likely due to systematic errors in the analysis. Reducing these residuals and improving the accuracy of top-down emission estimates will require better characterization of systematic errors in the observations and the model (chemistry and transport).


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


1995 ◽  
Vol 166 ◽  
pp. 372-372
Author(s):  
L. G. Taff ◽  
J. E. Morrison ◽  
R. L. Smart

As better precision is achieved and more sophisticated reduction methods are created previously invisible biases surface. This has been especially true in astrometric Schmidt plate work. The problem of their amelioration is not fully solved and precision per se is meaningless in the presence of poor accuracy of comparable amplitude. Continuing to benignly neglect this issue puts us in the position of standing on only one statistical leg. New techniques have been designed to further minimize systematic errors. Of especial interest to star catalog analysis is the method of infinitely overlapping circles (Taff, Bucciarelli & Lattanzi, ApJ 361, 667, 1990; Taff, Bucciarelli & Lattanzi, ApJ 392, 746 1992; Bucciarelli, Taff & Lattanzi, J. Stat. Comp. and Sim. 48, 29 1993). With it almost complete success has occurred with regard to the removal of systematic errors which creep into compilation catalogs as a result of inadequate treatment of catalog-to-catalog systematic errors; they can essentially be eliminated a priori or a posteriori (Bucciarelli, Lattanzi & Taff, in press in ApJ 1994; Taff & Bucciarelli, in press in ApJ 1994). What infinitely overlapping circles does can be briefly described as follows: Let X (x) be the measured (true) value of a standard coordinate, S(x,y) (ε) be the systematic (random) error in x at this point, let w∞ be the infinitely overlapping circle weight, a be the standard deviation of the random error in x, N be the total number of stars in this circle which has radius R, and x0,y0 be the coordinates of the center of this circle.


2019 ◽  
Vol 19 (21) ◽  
pp. 13569-13579 ◽  
Author(s):  
Helen M. Worden ◽  
A. Anthony Bloom ◽  
John R. Worden ◽  
Zhe Jiang ◽  
Eloise A. Marais ◽  
...  

Abstract. Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation are a primary source for the chemical production of carbon monoxide (CO) in the atmosphere, and these biogenic emissions account for about 18 % of the global CO burden. Partitioning CO fluxes to different source types in top-down inversion methods is challenging; typically a simple scaling of the posterior flux to prior flux values for fossil fuel, biogenic and biomass burning sources is used. Here we show top-down estimates of biogenic CO fluxes using a Bayesian inference approach, which explicitly accounts for both posterior and a priori CO flux uncertainties. This approach re-partitions CO fluxes following inversion of Measurements Of Pollution In The Troposphere (MOPITT) CO observations with the GEOS-Chem model, a global chemical transport model driven by assimilated meteorology from the NASA Goddard Earth Observing System (GEOS). We compare these results to the prior information for CO used to represent biogenic NMVOCs from GEOS-Chem, which uses the Model of Emissions of Gases and Aerosols from Nature (MEGAN) for biogenic emissions. We evaluate the a posteriori biogenic CO fluxes against top-down estimates of isoprene fluxes using Ozone Monitoring Instrument (OMI) formaldehyde observations. We find similar seasonality and spatial consistency in the posterior CO and top-down isoprene estimates globally. For the African savanna region, both top-down CO and isoprene seasonality vary significantly from the MEGAN a priori inventory. This method for estimating biogenic sources of CO will provide an independent constraint on modeled biogenic emissions and has the potential for diagnosing decadal-scale changes in emissions due to land-use change and climate variability.


Urban Studies ◽  
2021 ◽  
pp. 004209802110414
Author(s):  
Sergio Montero ◽  
Gianpaolo Baiocchi

Urban studies scholars have engaged in a lively debate on how to reformat comparative methods in the face of critical scrutiny of the discipline’s purported universalism. We share the enthusiasm for a reformatted urban comparativism and, in this paper, we turn to the thorny and more pragmatic question of how to actually carry it out. While traditional comparisons in urban studies have sought to find variation among similar cases by selecting a priori, in this article we propose to compare the findings of different researchers through a posteriori, that is, after the research has been done. We also argue that urban researchers need to focus on urban processes rather than cities; on repeated instances rather than on controlling for difference; and on mid-level abstraction rather than on grand theory or descriptive empirical cases. We put this strategy to work by comparing empirical research previously carried out by the authors on how two Latin American cities became international urban ‘best practices’: Bogotá as a sustainable transport model and Porto Alegre as a model of local participatory budgeting. The comparison highlights the tension between the simplified policy narratives that were mobilised to circulate Bogotá and Porto Alegre as international ‘best practices’ and the broader multi-scalar institutional reforms that these ‘best practice’ narratives have left behind in their global circulations. In doing so, we show the potential of a posteriori comparisons to analyse contemporary global urban dynamics and provide some explicit methodological tactics on how to do comparisons in a more systematic way.


2020 ◽  
pp. 137-155
Author(s):  
Paul Boghossian ◽  
Timothy Williamson

This essay defends the a priori–a posteriori distinction against two skeptical challenges posed by Williamson in Chapter 8. Against the argument that no top-down characterization of the distinction can line up with the intuitive paradigm examples, it contends that the argument’s reliance on the distinction between ‘inner’ and ‘outer’ experience renders it ineffective. An alternative way of running the argument is shown to lead to a different conclusion, one about the nature of justifiers. Against Williamson’s central argument, which presents a pair of cases designed to show that whatever distinction the paradigm examples mark it cannot be one of epistemological significance, the essay argues that Williamson fails to draw the correct conclusions from his cases, and in particular fails to show that the subject in either case can acquire justified belief via the type of exercise of the imagination that he describes.


2018 ◽  
Vol 18 (20) ◽  
pp. 15307-15327 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Rona L. Thompson ◽  
Sabine Eckhardt ◽  
Andreas Stohl

Abstract. This paper presents the results of BC inversions at high northern latitudes (> 50° N) for the 2013–2015 period. A sensitivity analysis was performed to select the best representative species for BC and the best a priori emission dataset. The same model ensemble was used to assess the uncertainty of the a posteriori emissions of BC due to scavenging and removal and due to the use of different a priori emission inventory. A posteriori concentrations of BC simulated over Arctic regions were compared with independent observations from flight and ship campaigns showing, in all cases, smaller bias, which in turn witnesses the success of the inversion. The annual a posteriori emissions of BC at latitudes above 50° N were estimated as 560±171 kt yr−1, significantly smaller than in ECLIPSEv5 (745 kt yr−1), which was used and the a priori information in the inversions of BC. The average relative uncertainty of the inversions was estimated to be 30 %.A posteriori emissions of BC in North America are driven by anthropogenic sources, while biomass burning appeared to be less significant as it is also confirmed by satellite products. In northern Europe, a posteriori emissions were estimated to be half compared to the a priori ones, with the highest releases to be in megacities and due to biomass burning in eastern Europe. The largest emissions of BC in Siberia were calculated along the transect between Yekaterinsburg and Chelyabinsk. The optimised emissions of BC were high close to the gas flaring regions in Russia and in western Canada (Alberta), where numerous power and oil and gas production industries operate. Flaring emissions in Nenets–Komi oblast (Russia) were estimated to be much lower than in the a priori emissions, while in Khanty-Mansiysk (Russia) they remained the same after the inversions of BC. Increased emissions at the borders between Russia and Mongolia are probably due to biomass burning in villages along the Trans-Siberian Railway. The maximum BC emissions in high northern latitudes (> 50° N) were calculated for summer months due to biomass burning and they are controlled by seasonal variations in Europe and Asia, while North America showed a much smaller variability.


2008 ◽  
Vol 8 (2) ◽  
pp. 209-250 ◽  
Author(s):  
O. Dubovik ◽  
T. Lapyonok ◽  
Y. J. Kaufman ◽  
M. Chin ◽  
P. Ginoux ◽  
...  

Abstract. Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model. The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators. Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful, mainly because MODIS aerosol data over highly reflecting desert dust sources is lacking. The broader implications of applying our approach are also discussed.


2021 ◽  
Author(s):  
John Worden ◽  
Daniel Cusworth ◽  
Zhen Qu ◽  
Yi Yin ◽  
Yuzhong Zhang ◽  
...  

Abstract. We present 2019 global methane (CH4) emissions and uncertainties, by sector, at 1-degree and country-scale resolution based on a Bayesian integration of satellite data and inventories. Globally, we find that agricultural and fire emissions are 227 +/− 19 Tg CH4/yr, waste is 50 +/− 7 Tg CH4/yr , anthropogenic fossil emissions are 82 +/− 12 Tg CH4/yr, and natural wetland/aquatic emissions are 180 +/− 10 Tg CH4/yr. These estimates are intended as a pilot dataset for the Global Stock Take in support of the Paris Agreement. However, differences between the emissions reported here and widely-used bottom-up inventories should be used as a starting point for further research because of potential systematic errors of these satellite based emissions estimates. Calculation of emissions and uncertainties: We first apply a standard optimal estimation (OE) approach to quantify CH4 fluxes using Greenhouse Gases Observing Satellite (GOSAT) total column CH4 concentrations and the GEOS-Chem global chemistry transport model. Second, we use a new Bayesian algorithm that projects these posterior fluxes to emissions by sector to 1 degree and country-scale resolution. This algorithm can also quantify uncertainties from measurement as well as smoothing error, which is due to the spatial resolution of the top-down estimate combined with the assumed structure in the prior emission uncertainties. Detailed Results: We find that total emissions for approximately 58 countries can be resolved with this observing system based on the degrees-of-freedom for signal (DOFS) metric that can be calculated with our Bayesian flux estimation approach. We find the top five emitting countries (Brazil, China, India, Russia, USA) emit about half of the global anthropogenic budget, similar to our choice of prior emissions. However, posterior emissions for these countries are mostly from agriculture, waste and fires (~129 Tg CH4/yr) with ~45 Tg CH4/yr from fossil emissions, as compared to prior inventory estimates of ~88 and 60 Tg CH4/yr respectively, primarily because the satellite observed concentrations are larger than expected in regions with substantive livestock activity. Differences are outside of 1-sigma uncertainties between prior and posterior for Brazil, India, and Russia but are consistent for China and the USA. The new Bayesian algorithm to quantify emissions from fluxes also allows us to “swap priors” if better informed or alternative priors and/or their covariances are available for testing. For example, recent bottom-up literature supposes greatly increased values for wetland/aquatic as well as fossil emissions. Swapping in priors that reflect these increased emissions results in posterior wetland emissions or fossil emissions that are inconsistent (differences greater than calculated uncertainties) with these increased bottom-up estimates, primarily because constraints related to the methane sink only allow total emissions across all sectors of ~560 Tg CH4/yr and because the satellite based estimate well constrains the spatially distinct fossil and wetland emissions. Given that this observing system consisting of GOSAT data and the GEOS-Chem model can resolve much of the different sectoral and country-wide emissions, with ~402 DOFS for the whole globe, our results indicate additional research is needed to identify the causes of discrepancies between these top-down and bottom-up results for many of the emission sectors reported here. In particular, the impact of systematic errors in the methane retrievals and transport model employed should be assessed where differences exist. However, our results also suggest that significant attention must be provided to the location and magnitude of emissions used for priors in top-down inversions; for example, poorly characterized prior emissions in one region and/or sector can affect top-down estimates in another because of the limited spatial resolution of these top-down estimates. Satellites such as the Tropospheric Monitoring Instrument (TROPOMI) and those in formulation such as the Copernicus CO2M, Methane-Sat, or Carbon Mapper offer the promise of much higher resolution fluxes relative to GOSAT assuming they can provide data with comparable or better accuracy, thus potentially reducing this uncertainty from poorly characterized emissions. These higher resolution estimates can therefore greatly improve the accuracy of emissions by reducing smoothing error. Fluxes calculated from other sources can also in principal be incorporated in the Bayesian estimation framework demonstrated here for the purpose of reducing uncertainty and improving the spatial resolution and sectoral attribution of subsequent methane emissions estimates.


2020 ◽  
pp. 168-174
Author(s):  
Paul Boghossian ◽  
Timothy Williamson

This essay responds to Williamson’s reformulated argument against the feasibility of a top-down characterization of the a priori–a posteriori distinction, arguing that Williamson fails to show that sense experience plays an irreducibly epistemic role in his new Mathematician example. Williamson’s example turns on the problematic claim that there is something intermediate between reading a proof lazily, deferring to the authority of its author, and reading it while checking its soundness for oneself. Furthermore, it is argued that Williamson’s defense of his Central argument is vitiated by a serious misreading of Boghossian’s initial criticism: that criticism was not meant to supply an alternative account of the way in which certain a priori propositions are known.


Sign in / Sign up

Export Citation Format

Share Document