scholarly journals Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements

2008 ◽  
Vol 8 (3) ◽  
pp. 8327-8355 ◽  
Author(s):  
P. Kishore ◽  
S. P. Namboothiri ◽  
J. H. Jiang ◽  
V. Sivakumar ◽  
K. Igarashi

Abstract. This paper mainly focuses on the validation of temperature estimates derived with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3 (FORMOSAT-3) system. The analysis is based on the radio occultation (RO) data sample collected during the first year observation from April 2006 to April 2007. For the validation, we have used the operational stratospheric analyses (models) including the National Centers for Environmental Prediction-Reanalysis (NCEP-Reanalysis), the Japanese 25-year Reanalysis (JRA-25), and the United Kingdom Met Office (MetO) data sets. Comparisons done in different formats reveal excellent agreement between the COSMIC and model outputs. Spatially, the largest deviations are noted in the polar latitudes, and height-wise, the tropical tropopause region noted the maximum differences. However, these differences are only 2–4 K. We found that among the three models the NCEP data sets have the best resemblance with the COSMIC measurements. We also have done comparison of specific humidity and refractivity profiles with other measurements/models. Specific humidity profiles show comparatively large differences at altitudes below 5 km. Refractivity profiles derived by the COSMIC and other datasets show very good agreement.

2009 ◽  
Vol 9 (3) ◽  
pp. 897-908 ◽  
Author(s):  
P. Kishore ◽  
S. P. Namboothiri ◽  
J. H. Jiang ◽  
V. Sivakumar ◽  
K. Igarashi

Abstract. This paper mainly focuses on the validation of temperature estimates derived with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3 (FORMOSAT-3) system. The analysis is based on the radio occultation (RO) data samples collected during the first year observation from April 2006 to April 2007. For the validation, we have used the operational stratospheric analyses including the National Centers for Environmental Prediction - Reanalysis (NCEP), the Japanese 25-year Reanalysis (JRA-25), and the United Kingdom Met Office (MetO) data sets. Comparisons done in different formats reveal good agreement between the COSMIC and reanalysis outputs. Spatially, the largest deviations are noted in the polar latitudes, and height-wise, the tropical tropopause region noted the maximum differences (2–4 K). We found that among the three reanalysis data sets the NCEP data sets have the best resemblance with the COSMIC measurements.


2019 ◽  
Author(s):  
Susann Tegtmeier ◽  
James Anstey ◽  
Sean Davis ◽  
Rossana Dragani ◽  
Yayoi Harada ◽  
...  

Abstract. The tropical tropopause layer (TTL) is the transition region between the well mixed, convective troposphere and the radiatively controlled stratosphere with air masses showing chemical and dynamical properties of both regions. The representation of the TTL in meteorological reanalysis data sets is important for studying the complex interactions of circulation, convection, trace gases, clouds and radiation. In this paper, we present the evaluation of TTL characteristics in reanalysis data sets that has been performed as part of the SPARC (Stratosphere– troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The most recent atmospheric reanalysis data sets all provide realistic representations of the major characteristics of the temperature structure within the TTL. There is good agreement between reanalysis estimates of tropical mean temperatures and radio occultation data, with relatively small cold biases for most data sets. Temperatures at the cold point and lapse rate tropopause levels, on the other hand, show warm biases in reanalyses when compared to observations. This tropopause-level warm bias is related to the vertical resolution of the reanalysis data, with the smallest bias found for data sets with the highest vertical resolution around the tropopause. Differences of the cold point temperature maximise over equatorial Africa, related to Kelvin wave activity and associated disturbances in TTL temperatures. Model simulations of air mass transport into the stratosphere driven by reanalyses with a warm cold point bias can be expected to have too little dehydration. Interannual variability in reanalysis temperatures is best constrained in the upper TTL, with larger differences at levels below the cold point. The reanalyses reproduce the temperature responses to major dynamical and radiative signals such as volcanic eruptions and the QBO. Long-term reanalysis trends in temperature in the upper TTL show good agreement with trends derived from adjusted radiosonde data sets indicating significant stratospheric cooling of around −0.5 to −1 K/decade. At 100 hPa and the cold point, most of the reanalyses suggest small but significant cooling trends of −0.3 to −0.6 K/decade that are statistically consistent with trends based on the adjusted radiosonde data sets. Advances of the reanalysis and observational systems over the last decades have led to a clear improvement of the TTL reanalyses products over time. Biases of the temperature profiles and differences in interannual variability clearly decreased in 2006, when densely sampled radio occultation data started being assimilated by the reanalyses. While there is an overall good agreement, different reanalyses offer different advantages in the TTL such as realistic profile and cold point temperature, continuous time series or a realistic representation of signals of interannual variability. Their use in model simulations and in comparisons with climate model output should be tailored to their specific strengths and weaknesses.


2008 ◽  
Vol 26 (11) ◽  
pp. 3225-3234 ◽  
Author(s):  
T. Schmidt ◽  
J. Wickert ◽  
S. Heise ◽  
F. Flechtner ◽  
E. Fagiolini ◽  
...  

Abstract. A climatological validation of the 6-hourly operational ECMWF troposphere and lower stratosphere temperatures as well as geopotential heights between 1000 and 10 hPa is performed using the 2001–2007 (80 months from May 2001 to December 2007) CHAMP radio occultation data. Generally there is a good agreement between ECMWF and CHAMP temperatures averaged over 300–10 hPa for all years/seasons with global annual mean biases (standard deviations) less than 0.3 (1.7) K. Regional and temporal discrepancies occur within the polar vortex mainly on the Southern Hemisphere and the tropical tropopause region. Global annual mean biases (standard deviations) of geopotential heights between 300 and 10 hPa are in the range of −30 up to +5 (30–50) geopotential meter. Larger deviations from the mean values are also observed in the tropics and polar zones. Both, the biases and standard deviations between CHAMP and ECMWF temperatures and geopotential heights differ significantly before and after February and December 2006, i.e. the dates when ECMWF increased the number of model levels from L60 to L91 (1 February 2006) and where ECMWF became one of the first weather centers assimilating radio occultation data (since 12 December 2006), mainly from the COSMIC mission. At ECMWF the CHAMP data were only assimilated until 4 February 2007, e.g. both data sets are mostly independent from each other during the time period considered here.


Author(s):  
Therese Rieckh ◽  
Jeremiah P. Sjoberg ◽  
Richard A. Anthes

AbstractWe apply the three-cornered hat (3CH) method to estimate refractivity, bending angle, and specific humidity error variances for a number of data sets widely used in research and/or operations: radiosondes, radio occultation (COSMIC, COSMIC-2), NCEP global forecasts, and nine reanalyses. We use a large number and combinations of data sets to obtain insights into the impact of the error correlations among different data sets that affect 3CH estimates. Error correlations may be caused by actual correlations of errors, representativeness differences, or imperfect co-location of the data sets. We show that the 3CH method discriminates among the data sets and how error statistics of observations compare to state-of-the-art reanalyses and forecasts, as well as reanalyses that do not assimilate satellite data. We explore results for October and November 2006 and 2019 over different latitudinal regions and show error growth of the NCEP forecasts with time. Because of the importance of tropospheric water vapor to weather and climate, we compare error estimates of refractivity for dry and moist atmospheric conditions.


2013 ◽  
Vol 13 (22) ◽  
pp. 11221-11234 ◽  
Author(s):  
F. Arfeuille ◽  
B. P. Luo ◽  
P. Heckendorn ◽  
D. Weisenstein ◽  
J. X. Sheng ◽  
...  

Abstract. In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.


2020 ◽  
Vol 13 (1) ◽  
pp. 287-308
Author(s):  
Stefan Lossow ◽  
Charlotta Högberg ◽  
Farahnaz Khosrawi ◽  
Gabriele P. Stiller ◽  
Ralf Bauer ◽  
...  

Abstract. The annual variation of δD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the δD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofísica de Andalucía in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the δD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in δD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a δD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere.


2009 ◽  
Vol 26 (6) ◽  
pp. 1075-1089 ◽  
Author(s):  
D. Jagadheesha ◽  
B. Simon ◽  
P-K. Pal ◽  
P. C. Joshi ◽  
A. Maheshwari

Abstract An empirical technique is proposed to obtain temperature and humidity profiles over the tropics using radio occultation refractivity profiles and surface/available lower-altitude temperature and pressure measurements over humid tropical regions. The technique is tested on a large number of diverse radiosonde-derived refractivity profiles over the tropics (30°S–30°N) and selected Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation refractivity profiles that have collocated radiosonde observations over the region 10°S–30°N during the boreal summer of 2006. In a number of cases, the results were in good agreement with the collocated radiosonde data. The error statistics of temperature and humidity profiles obtained from the proposed technique are discussed and compared with the previously published results from another technique and also with the results of a one-dimensional variational data assimilation (1DVAR) technique given with COSMIC data. It is found that the previously published results and proposed technique are marginally better (worse) in reproducing observed relative humidity (specific humidity) when compared to the 1DVAR technique. The proposed new technique is applied on COSMIC refractivity profiles over the Bay of Bengal during summer 2007 to derive changes in vertical thermal and moisture changes in the troposphere between active and break phases of the monsoon pattern and many of the observed features are captured reasonably well.


2020 ◽  
Vol 20 (2) ◽  
pp. 753-770 ◽  
Author(s):  
Susann Tegtmeier ◽  
James Anstey ◽  
Sean Davis ◽  
Rossana Dragani ◽  
Yayoi Harada ◽  
...  

Abstract. The tropical tropopause layer (TTL) is the transition region between the well-mixed convective troposphere and the radiatively controlled stratosphere with air masses showing chemical and dynamical properties of both regions. The representation of the TTL in meteorological reanalysis data sets is important for studying the complex interactions of circulation, convection, trace gases, clouds, and radiation. In this paper, we present the evaluation of climatological and long-term TTL temperature and tropopause characteristics in the reanalysis data sets ERA-Interim, ERA5, JRA-25, JRA-55, MERRA, MERRA-2, NCEP-NCAR (R1), and CFSR. The evaluation has been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The most recent atmospheric reanalysis data sets (ERA-Interim, ERA5, JRA-55, MERRA-2, and CFSR) all provide realistic representations of the major characteristics of the temperature structure within the TTL. There is good agreement between reanalysis estimates of tropical mean temperatures and radio occultation data, with relatively small cold biases for most data sets. Temperatures at the cold point and lapse rate tropopause levels, on the other hand, show warm biases in reanalyses when compared to observations. This tropopause-level warm bias is related to the vertical resolution of the reanalysis data, with the smallest bias found for data sets with the highest vertical resolution around the tropopause. Differences in the cold point temperature maximize over equatorial Africa, related to Kelvin wave activity and associated disturbances in TTL temperatures. Interannual variability in reanalysis temperatures is best constrained in the upper TTL, with larger differences at levels below the cold point. The reanalyses reproduce the temperature responses to major dynamical and radiative signals such as volcanic eruptions and the quasi-biennial oscillation (QBO). Long-term reanalysis trends in temperature in the upper TTL show good agreement with trends derived from adjusted radiosonde data sets indicating significant stratospheric cooling of around −0.5 to −1 K per decade. At 100 hPa and the cold point, most of the reanalyses suggest small but significant cooling trends of −0.3 to −0.6 K per decade that are statistically consistent with trends based on the adjusted radiosonde data sets. Advances of the reanalysis and observational systems over the last decades have led to a clear improvement in the TTL reanalysis products over time. Biases of the temperature profiles and differences in interannual variability clearly decreased in 2006, when densely sampled radio occultation data started being assimilated by the reanalyses. While there is an overall good agreement, different reanalyses offer different advantages in the TTL such as realistic profile and cold point temperature, continuous time series, or a realistic representation of signals of interannual variability. Their use in model simulations and in comparisons with climate model output should be tailored to their specific strengths and weaknesses.


2019 ◽  
Author(s):  
Philipp Reutter ◽  
Patrick Neis ◽  
Susanne Rohs ◽  
Bastien Sauvage

Abstract. Cirrus clouds and their potential formation regions, so-called ice-supersaturated regions (ISSRs) occur frequently in the tropopause region. It is assumed that ISSRs and cirrus clouds can change the tropopause structure by diabatic processes, driven by latent heating due to phase transition and interaction with radiation. For many research questions a three-dimensional picture including a sufficient temporal resolution of the water vapour fields in the tropopause region is required. This requirement is fulfilled nowadays by reanalysis products such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. However, for a meaningful investigation of water vapour in the tropopause region a comparison of the reanalysis data with measurement is advisable, since it is difficult to measure water vapour and to assimilate meaningful measurements into reanalysis products. Here, we present an intercomparison of high-resolution in-situ measurements aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org) with ERA-Interim. Temperature and humidity data over the North Atlantic from 2000 to 2010 are compared relative to the dynamical tropopause. The comparison of the temperature shows a good agreement between measurement and ERA-Interim. While ERA-Interim can reproduce the main features of the water vapour measurements of IAGOS, the variability of the data is underestimated by the reanalysis data. The combination of temperature and water vapour leads to the relative humidity with respect to ice (RHi). Here ERA-Interim deviates from the measurements concerning values of larger than RHi=100 %, both in number and strength of supersaturation. The comparison of ISSR pathlengths shows distinct differences, which can be traced back to the spatial resolution of both data sets. IAGOS shows significantly more smaller ISSRs compared to ERA-Interim. A good agreement begins only at pathlengths in the order of the ERA-Interim spatial resolution and larger.


2018 ◽  
Author(s):  
Therese Rieckh ◽  
Richard Anthes ◽  
William Randel ◽  
Shu-Peng Ho ◽  
Ulrich Foelsche

Abstract. While water vapor is the most important tropospheric greenhouse gas, it is also highly variable in both space and time, and water vapor concentrations range over three orders of magnitude in the troposphere. These properties challenge all observing systems to accurately measure and resolve the vertical structure and variability of tropospheric humidity. In this study we characterize the humidity measurements of various observing techniques, including four separate Global Positioning System (GPS) Radio Occultation (RO) humidity retrievals (UCAR direct, UCAR 1D-Var, WEGC 1D-Var, Jet Propulsion Laboratory (JPL) direct), radiosonde, and Atmospheric Infrared Sounder (AIRS) data. Furthermore, we evaluate how well the ERA-Interim reanalysis and National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model perform in analyzing water vapor at different levels. To investigate detailed vertical structure, we used time–height cross sections over specific locations (radiosonde stations in the tropical and subtropical western Pacific) for the year 2007. We found that RO humidity has comparable or better accuracy than both radiosonde and AIRS humidity over 800 hPa to 400 hPa, as well as below 800 hPa if super-refraction is absent. The various RO retrievals of specific humidity agree within 20 % in the 1000 hPa to 400 hPa layer, and differences are most pronounced above 600 hPa.


Sign in / Sign up

Export Citation Format

Share Document