scholarly journals Updated MISR dark water research aerosol retrieval algorithm – Part 1: Coupled 1.1 km ocean surface chlorophyll <i>a</i> retrievals with empirical calibration corrections

2017 ◽  
Vol 10 (4) ◽  
pp. 1539-1555 ◽  
Author(s):  
James A. Limbacher ◽  
Ralph A. Kahn

Abstract. As aerosol amount and type are key factors in the atmospheric correction required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m−3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov–Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS–Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR–MODIS collocations having MODIS Chl < 1.5 mg m−3, MISR and MODIS show very good agreement: r = 0. 96, MAE  =  0.09, and RMSE  =  0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS–Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

2016 ◽  
Author(s):  
James A. Limbacher ◽  
Ralph A. Kahn

Abstract. As aerosol amount and type are key factors in the “atmospheric correction” required for remote-sensing chlorophyll-a concentration (Chl) retrievals, the Multi-Angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean-surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo retrievals. We develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, and introduce a self-consistent retrieval of Chl together with aerosol over dark water. The calibration corrections include: a modified stray-light model based on comparison with coincident MODerate-resolution Imaging Spectroradiometer (MODIS) Terra data, and trend analysis using MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. The trend analysis shows that MISR radiometric sensitivity decreased by up to 2 percent for MISR spectral bands between January 2002 and December 2014. After applying calibration corrections, we run the MISR Research Retrieval Algorithm (RA) to validate the MISR RA-retrieved Chl, and analyze both the MISR and corresponding MODIS-Terra values compared to a set of 49 collocated SeaBASS in situ observations, constrained to Chlin situ 


2005 ◽  
Vol 62 (4) ◽  
pp. 1093-1117 ◽  
Author(s):  
Jacek Chowdhary ◽  
Brian Cairns ◽  
Michael I. Mishchenko ◽  
Peter V. Hobbs ◽  
Glenn F. Cota ◽  
...  

Abstract The extensive set of measurements performed during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment provides a unique opportunity to evaluate aerosol retrievals over the ocean from multiangle, multispectral photometric, and polarimetric remote sensing observations by the airborne Research Scanning Polarimeter (RSP) instrument. Previous studies have shown the feasibility of retrieving particle size distributions and real refractive indices from such observations for visible wavelengths without prior knowledge of the ocean color. This work evaluates the fidelity of the aerosol retrievals using RSP measurements during the CLAMS experiment against aerosol properties derived from in situ measurements, sky radiance observations, and sun-photometer measurements, and further extends the scope of the RSP retrievals by using a priori information about the ocean color to constrain the aerosol absorption and vertical distribution. It is shown that the fine component of the aerosol observed on 17 July 2001 consisted predominantly of dirty sulfatelike particles with an extinction optical thickness of several tenths in the visible, an effective radius of 0.15 ± 0.025 μm and a single scattering albedo of 0.91 ± 0.03 at 550 nm. Analyses of the ocean color and sky radiance observations favor the lower boundary of aerosol single scattering albedo, while in situ measurements favor its upper boundary. Both analyses support the polarimetric retrievals of fine-aerosol effective radius and the consequent spectral variation in extinction optical depth. The estimated vertical distribution of this aerosol component depends on assumptions regarding the water-leaving radiances and is consistent with the top of the aerosol layer being close to the aircraft height (3500 m), with the bottom of the layer being between 2.7 km and the surface. The aerosol observed on 17 July 2001 also contained coarse-mode particles. Comparison of RSP data with sky radiance and in situ measurements suggests that this component consists of nonspherical particles with an effective radius in excess of 1 μm, and with the extinction optical depth being much less than one-tenth at 550 nm.


2018 ◽  
Author(s):  
James A. Limbacher ◽  
Ralph A. Kahn

Abstract. Coastal waters serve as transport pathways to the ocean for all agricultural and other runoff from terrestrial sources; they are also some of the most biologically productive on the planet. Estimating the impact coastal waters have on the global carbon budget requires relating satellite-based remote-sensing retrievals of biological productivity (e.g., Chlorophyll-a concentration) to in-situ measurements taken in near-surface waters. The Multi-angle Imaging SpectroRadiometer (MISR) can uniquely constrain the “atmospheric correction” needed to derive ocean color from remote-sensing imagers. Here, we retrieve aerosol amount and type from MISR over all types of water. The primary limitation is an upper bound on aerosol optical depth (AOD), as the algorithm must be able to distinguish the surface. This updated MISR research aerosol retrieval algorithm (RA) also assumes that light reflection by the underlying ocean surface is Lambertian. The RA computes the ocean surface reflectance (Rrs) analytically for a given AOD, aerosol optical model, and wind speed. We provide retrieval examples over shallow, turbid, and eutrophic waters and introduce a productivity/turbidity index (PTI), calculated from retrieved spectral Rrs, that distinguished water types (similar to NDVI over land). We also validate the new algorithm by comparing spectral AOD and Angstrom exponent (ANG) results with 2419 collocated AERosol RObotic NETwork (AERONET) observations. For AERONET 558 nm interpolated AOD  0.20, the ANG RMSE is 0.25 and r = 0.89. Although MISR RA AOD retrieval quality does not appear to be substantially impacted by the presence of turbid water, MISR RA-retrieved Angstrom exponent seems to suffer from increased uncertainty under such conditions. MISR supplements current ocean color sources in regions where sun glint precludes retrievals from single-view-angle instruments. MISR atmospheric correction should also be more robust than that derived from single-view instruments such as MODIS. This is especially true in regions of shallow, turbid, and eutrophic waters, locations where biological productivity can be high, and single-view angle retrieval algorithms struggle to separate atmospheric from oceanic features.


2019 ◽  
Vol 12 (1) ◽  
pp. 675-689 ◽  
Author(s):  
James A. Limbacher ◽  
Ralph A. Kahn

Abstract. Coastal waters serve as transport pathways to the ocean for all agricultural and other runoff from terrestrial sources, and many are the sites for upwelling of nutrient-rich, deep water; they are also some of the most biologically productive on Earth. Estimating the impact coastal waters have on the global carbon budget requires relating satellite-based remote-sensing retrievals of biological productivity (e.g., chlorophyll a concentration) to in situ measurements taken in near-surface waters. The Multi-angle Imaging SpectroRadiometer (MISR) can uniquely constrain the “atmospheric correction” needed to derive ocean color from remote-sensing imagers. Here, we retrieve aerosol amount and type from MISR over all types of water. The primary limitation is an upper bound on aerosol optical depth (AOD), as the algorithm must be able to distinguish the surface. This updated MISR research aerosol retrieval algorithm (RA) also assumes that light reflection by the underlying ocean surface is Lambertian. The RA computes the ocean surface reflectance (Rrs) analytically for a given AOD, aerosol optical model, and wind speed. We provide retrieval examples over shallow, turbid, and eutrophic waters and introduce a productivity and turbidity index (PTI), calculated from retrieved spectral Rrs, that distinguished water types (similar to the the normalized difference vegetation index, NDVI, over land). We also validate the new algorithm by comparing spectral AOD and Ångström exponent (ANG) results with 2419 collocated AErosol RObotic NETwork (AERONET) observations. For AERONET 558 nm interpolated AOD < 1.0, the root-mean-square error (RMSE) is 0.04 and linear correlation coefficient is 0.95. For the 502 cloud-free MISR and AERONET collocations with an AERONET AOD > 0.20, the ANG RMSE is 0.25 and r is 0.89. Although MISR RA AOD retrieval quality does not appear to be substantially impacted by the presence of turbid water, the MISR-RA-retrieved Ångström exponent seems to suffer from increased uncertainty under such conditions. MISR supplements current ocean color sources in regions where sunglint precludes retrievals from single-view-angle instruments. MISR atmospheric correction should also be more robust than that derived from single-view instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). This is especially true in regions of shallow, turbid, and eutrophic waters, locations where biological productivity can be high, and single-view-angle retrieval algorithms struggle to separate atmospheric from oceanic features.


2019 ◽  
Author(s):  
Mohanan R. Manoj ◽  
Sreedharan K. Satheesh ◽  
Krishnaswamy K. Moorthy ◽  
Hugh Coe

Abstract. Vertical structures of aerosol single scattering albedo (SSA), from near the surface through the free troposphere, have been estimated for the first time at distinct geographical locations over the Indian mainland and adjoining oceans, using in-situ measurements of aerosol scattering and absorption coefficients aboard the FAAM BAe-146 aircraft during the South West Asian Aerosol Monsoon Interactions (SWAAMI) campaign from June to July 2016. These are used to examine the spatial variation of SSA profiles and also to characterize its transformation from just prior to the onset of Indian Summer Monsoon (June 2016) to its active phase (July 2016). Very strong aerosol absorption, with SSA values as low as 0.7, persisted in the lower altitudes (


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2020 ◽  
Vol 644 ◽  
pp. A24
Author(s):  
Y. A. Ilyushin ◽  
P. Hartogh

Context. We address the issue of remote sensing of the surfaces of Galilean icy moons. We investigate the prospects for retrieval of the physical parameters of the surface of the Jovian icy moons from submillimeter wave radiometry data. Aims. We show that the model parameters could not be completely retrieved from the polarized radiometry data, but some of their combinations can be effectively constrained. Methods. The polarized radiative transfer in lossy porous ice was numerically simulated. A Bayesian maximum likelihood retrieval algorithm was developed and tested on the simulated data in a wide range of variation of the model parameters. The uncertainty of the retrievals was evaluated with the Cramer-Rao bounds. We established the combinations of model parameters that can be effectively constrained from the measured data. Results. We reveal that the effective scatterer size can be reliably constrained for a range of values where the scattering asymmetry parameter uniquely depends on the wave parameter, and for relatively high values of the single scattering albedo, for which the scattering in the medium is significant. Similarly, the domains of reliable retrieval of the single scattering albedo and thermal skin depth are established.


2021 ◽  
Author(s):  
Meloë S. F. Kacenelenbogen ◽  
Qian Tan ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp ◽  
Karl D. Froyd ◽  
...  

Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical parameters that need to be refined in models. In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training dataset. We also investigate the relative skill of various combinations of aerosol optical properties to define AMTs and how much these optical properties can capture dominant aerosol speciation. We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find that the optically based classifications for BB from agricultural fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results relating to those classes. The technique and results presented in this study are suitable to develop a representative, robust and diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much broader observational aerosol data set to evaluate chemical transport and air quality models than is currently available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated observables).


2014 ◽  
Vol 11 (6) ◽  
pp. 9299-9340
Author(s):  
M. Montes-Hugo ◽  
H. Bouakba ◽  
R. Arnone

Abstract. The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL) is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU) and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor), EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM) for estimating the phytoplankton absorption coefficient at 443 nm (aph(443)) and the chlorophyll concentration (chl) in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443) estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013). A change on the inversion approach used for estimating aph(443) values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System) default values for the optical cross section of phytoplankton (i.e., aph(443) = aph(443)/chl = 0.056 m2mg−1), the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443) retrievals and with respect to in situ determinations increased up to 29%.


2011 ◽  
Vol 11 (20) ◽  
pp. 10661-10676 ◽  
Author(s):  
E. Andrews ◽  
P. J. Sheridan ◽  
J. A. Ogren

Abstract. A small airplane made 597 aerosol optical property (light absorption and light scattering) vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption). The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter), particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD) although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and winter. The observed seasonal cycle of aerosol loading corresponds with changes in air mass back trajectories: the aerosol scattering was higher when transport was from polluted areas (e.g., the Gulf Coast) and lower when the air came from cleaner regions and/or the upper atmosphere.


Sign in / Sign up

Export Citation Format

Share Document