scholarly journals The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products

2017 ◽  
Vol 10 (1) ◽  
pp. 59-81 ◽  
Author(s):  
David Crisp ◽  
Harold R. Pollock ◽  
Robert Rosenberg ◽  
Lars Chapsky ◽  
Richard A. M. Lee ◽  
...  

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry-air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small (< 0.25 %) changes in the background XCO2 field. High measurement precision is therefore essential to resolve these small variations, and high accuracy is needed because small biases in the retrieved XCO2 distribution could be misinterpreted as evidence for CO2 fluxes. To meet its demanding measurement requirements, each OCO-2 spectrometer channel collects 24 spectra s−1 across a narrow (< 10 km) swath as the observatory flies over the sunlit hemisphere, yielding almost 1 million soundings each day. On monthly timescales, between 7 and 12 % of these soundings pass the cloud screens and other data quality filters to yield full-column estimates of XCO2. Each of these soundings has an unprecedented combination of spatial resolution (< 3 km2/sounding), spectral resolving power (λ∕Δλ > 17 000), dynamic range (∼ 104), and sensitivity (continuum signal-to-noise ratio > 400). The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.

2016 ◽  
Author(s):  
David Crisp ◽  
Harold R. Pollock ◽  
Robert Rosenberg ◽  
Lars Chapsky ◽  
Richard A. M. Lee ◽  
...  

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is particularly challenging remote sensing observations because the all but the largest emission sources and natural absorbers produce only small (


2022 ◽  
Author(s):  
Dien Wu ◽  
Junjie Liu ◽  
Paul O. Wennberg ◽  
Paul I. Palmer ◽  
Robert R. Nelson ◽  
...  

Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many combustion sources. Previous efforts have combined satellite-based observations of multiple tracers to calculate their emission ratio (ER) for inferring combustion efficiency at regional to city scale. Very few studies have focused on burning efficiency at the sub-city scale or related it to emission sectors using space-based observations. Several factors are important for deriving spatially-resolved ERs from asynchronous satellite measurements including 1) variations in meteorological conditions induced by different overpass times, 2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), and 3) interferences from the biosphere and biomass burning. In this study, we extended an established emission estimate approach to arrive at spatially-resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI). To evaluate the influence of the confounding factors listed above and further explain the intra-urban variations in ERs, we leveraged a Lagrangian atmospheric transport model and an urban land cover classification dataset and reported ERCO from the sounding level to the overpass- and city- levels. We found that the difference in the overpass times and averaging kernels between OCO and TROPOMI strongly affect the estimated spatially-resolved ERCO. Specifically, a time difference of > 3 hours typically led to dramatic changes in the wind direction and shape of urban plumes and thereby making the calculation of accurate sounding-specific ERCO difficult. After removing those cases from consideration and applying a simple plume shift method when necessary, we discovered significant contrasts in combustion efficiencies between 1) two megacities versus two industry-oriented cities and 2) different regions within a city, based on six to seven nearly-coincident overpasses per city. Results suggest that the combustion efficiency for heavy industry in Los Angeles is slightly lower than its overall city-wide value (< 10 ppb-CO / ppm-CO2). In contrast, ERs related to the heavy industry in Shanghai are found to be much higher than Shanghai’s city-mean and more aligned with city-means of the two industry-oriented Chinese cities (approaching 20 ppb-CO / ppm-CO2). Although investigations based on a larger number of satellite overpasses are needed, our first analysis provides guidance for estimating intra-city gradients in combustion efficiency from future missions, such as those that will map column CO2 and CO concentration simultaneously with high spatiotemporal resolutions.


2017 ◽  
Author(s):  
Claudia Grossi ◽  
Felix R. Vogel ◽  
Roger Curcoll ◽  
Alba Àgueda ◽  
Arturo Vargas ◽  
...  

Abstract. Atmospheric concentrations of the two main greenhouse gases (GHGs), carbon dioxide (CO2) and methane (CH4), are continuously measured since November 2012 at the Spanish rural station of Gredos (GIC3), within the climate network ClimaDat, together with atmospheric radon (222Rn) tracer and meteorological parameters. The atmospheric variability of CH4 concentrations measured from 2013 to 2015 at GIC3 has been analyzed in this study. It is interpreted in relation to the variability of measured 222Rn concentrations, modelled 222Rn fluxes and modelled heights of the planetary boundary layer (PBLH) in the same period. In addition, nocturnal fluxes of CH4 were estimated using two methods: the Radon Tracer Method (RTM) and one based on the EDGARv4.2 bottom-up emission inventory. Both previous methods have been applied using the same footprints, calculated with the atmospheric transport model FLEXPARTv6.2. Results show that daily and seasonal changes in atmospheric concentrations of 222Rn (and the corresponding fluxes) can help to understand the atmospheric CH4 variability. On daily basis, the variation in the PBLH mainly drives changes in 222Rn and CH4 concentrations while, on monthly basis, their atmospheric variability seems to depend on changes in their emissions. The median value of RTM based methane fluxes (FR_CH4) is 0.17 mg CH4 m−2 h−1 with an absolute deviation of 0.08 mg CH4 m−2 h−1. Median methane fluxes based on bottom-up inventory (FE_CH4) is of 0.32 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1. Monthly FR_CH4 flux shows a seasonality which is not observed in the monthly FE_CH4 flux. During January–May FR_CH4 fluxes present a median value of 0.08 mg CH4 m−2 h−1 with an absolute deviation of 0.05 mg CH4 m−2 h−1 and a median value of 0.19 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1 during June–December. This seasonal doubling of the median methane fluxes calculated by RTM at the GIC3 area seems to be mainly related to the alternate presence of transhumant livestock in the GIC3 area. The results obtained in this study highlight the benefit of applying independent RTM to improve the seasonality of the emission factors from bottom-up inventories.


2018 ◽  
Vol 11 (10) ◽  
pp. 5565-5586 ◽  
Author(s):  
Michael F. Schibig ◽  
Duane Kitzis ◽  
Pieter P. Tans

Abstract. Long-term monitoring of carbon dioxide (CO2) in the atmosphere is key for a better understanding of the processes involved in the carbon cycle that have a major impact on further climate change. Keeping track of large-scale emissions and removals (sources and sinks) of CO2 requires very accurate measurements. They all have to be calibrated very carefully and have to be traceable to a common scale, the World Meteorological Organization (WMO) CO2 X2007 scale, which is maintained by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) in Boulder, CO, USA. The international WMO GAW (Global Atmosphere Watch) program sets as compatibility goals for the required agreement between different methods and laboratories ±0.1 µmol mol−1 for the Northern Hemisphere and ±0.05 µmol mol−1 for the Southern Hemisphere. The reference gas mixtures used to pass down and distribute the scale are stored in high-pressure aluminum cylinders. It is crucial that the standards remain stable during their entire time of use. In this study the tested vertically positioned aluminum cylinders showed similar CO2 enrichment during low-flow conditions (0.3 L min−1), which are similar to flows often used for calibration gases in practical applications. The average CO2 enrichment was 0.090±0.009 µmol mol−1 as the cylinder was emptied from about 150 to 1 bar above atmosphere. However, it is important to note that the enrichment is not linear but follows Langmuir's adsorption–desorption model, where the CO2 enrichment is almost negligible at high pressures but much more pronounced at low pressures. When decanted at a higher rate of 5.0 L min−1 the enrichment becomes 0.22±0.05 µmol mol−1 for the same pressure drop. The higher enrichment is related to thermal diffusion and fractionation effects in the cylinder, which were also dependent on the cylinder's orientation and could even turn negative. However, the low amount of CO2 adsorbed on the cylinder wall and the fact that the main increase happens at low pressure lead to the conclusion that aluminum cylinders are suitable to store ambient CO2-in-dry-air mixtures provided they are not used below 20 bar. In cases where they are used in high-flow experiments that involve significant cylinder temperature changes, special attention has to be paid to possible fractionation effects.


2007 ◽  
Vol 7 (13) ◽  
pp. 3461-3479 ◽  
Author(s):  
C. Geels ◽  
M. Gloor ◽  
P. Ciais ◽  
P. Bousquet ◽  
P. Peylin ◽  
...  

Abstract. The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain sites as well as flasks sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are generally underpredicted. This is a reflection of the different mixing regimes during day and night combined with different vertical resolution between models. In line with this finding, the agreement among models is increased when sampling in the afternoon hours only and when sampling the mixed portion of the PBL, which amounts to sampling at a few hundred meters above ground. The main recommendations resulting from the study for constraining land carbon sources and sinks using high-resolution concentration data and state-of-the art transport models through inverse methods are given in the following: 1) Low altitude stations are presently preferable in inverse studies. If high altitude stations are used then the model level that represents the specific sites should be applied, 2) at low altitude sites only the afternoon values of concentrations can be represented sufficiently well by current models and therefore afternoon values are more appropriate for constraining large-scale sources and sinks in combination with transport models, 3) even when using only afternoon values it is clear that data sampled several hundred meters above ground can be represented substantially more robustly in models than surface station records, which emphasize the use of tower data in inverse studies and finally 4) traditional large scale transport models seem not sufficient to resolve fine-scale features associated with fossil fuel emissions, as well as larger-scale features like the concentration distribution above the south-western Europe. It is therefore recommended to use higher resolution models for interpretation of continental data in future studies.


2018 ◽  
Vol 51 (3) ◽  
pp. 591-595 ◽  
Author(s):  
Michael Heere ◽  
Martin J. Mühlbauer ◽  
Alexander Schökel ◽  
Michael Knapp ◽  
Helmut Ehrenberg ◽  
...  

The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for `energy research with neutrons' (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ.


Nature ◽  
2002 ◽  
Vol 415 (6872) ◽  
pp. 626-630 ◽  
Author(s):  
Kevin Robert Gurney ◽  
Rachel M. Law ◽  
A. Scott Denning ◽  
Peter J. Rayner ◽  
David Baker ◽  
...  

2010 ◽  
Vol 10 (20) ◽  
pp. 9981-9992 ◽  
Author(s):  
S. Houweling ◽  
I. Aben ◽  
F.-M. Breon ◽  
F. Chevallier ◽  
N. Deutscher ◽  
...  

Abstract. This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by σ=0.5 ppm over the continents and σ=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transport.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Ariel R. Muliadi ◽  
Paul E. Sojka ◽  
Yudaya R. Sivathanu ◽  
Jongmook Lim

The goal of this study was to determine when patternation information derived from Phase Doppler Analyzer (Dantec Dynamics, Skovlunde, Denmark, dual-PDA) measurements of volume flux, drop velocity, and mean size agreed with corresponding values measured using an optical patternator (Enurga, Inc., West Lafayette, IN, SetScan OP-600). To achieve this, data from each instrument were transformed into spatially resolved absorptances (equivalent to drop surface area per unit spray volume) and compared. Key conclusion is absorptance agreement to within 20% in many cases. However, discrepancies between phase Doppler analyzer (PDA)-calculated and optical patternator-measured absorptances become larger as the drop arrival rate increases, as the mean drop size decreases, and when a significant drop size-velocity correlation is present. These discrepancies are attributed to an underestimation of the volume flux (which becomes more important with increasing droplet arrival rate), an over-reporting of the mean drop diameter (which is the result of the restrictive data acquisition scheme applied when ensuring mass closure for the PDA measurements), the limited PDA dynamic range (which can preclude simultaneously accounting for both the largest and smallest drops in the spray), and by the optical patternator’s number-density based measurement scheme (which will not yield the same results as the flux-based PDA when a drop size-velocity correlation is present).


2019 ◽  
Author(s):  
Martha P. Butler ◽  
Thomas Lauvaux ◽  
Sha Feng ◽  
Junjie Liu ◽  
Kevin W. Bowman ◽  
...  

Abstract. Quantifying the uncertainty of inversion-derived fluxes and attributing the uncertainty to errors in either flux or transport continue to be challenges in the characterization of surface sources and sinks of carbon dioxide (CO2). It is also not clear if fluxes inferred in a coarse-resolution global system will remain optimal in a higher-resolution modeling environment. Here we present an off-line coupling of the mesoscale Weather Research and Forecasting (WRF) model to optimized biogenic CO2 fluxes and mole fractions from the global Carbon Monitoring System inversion system (CMS-Flux). The coupling framework consists of methods to constrain the mass of CO2 introduced into WRF, effectively nesting our North American domain within the global model. We test the coupling by simulating Greenhouse gases Observing SATellite (GOSAT) column-averaged dry-air mole fractions (XCO2) over North American for 2010. We find mean model-model differences in summer of ~ 0.12 ppm. While 85 % of the XCO2 values are due to long-range transport from outside our North American domain, most of the model-model differences appear to be due to transport differences in the fraction of the troposphere below 850 hPa. The framework methods can be used to couple other global model inversion results to WRF for further study using different boundary layer and transport parameterizations.


Sign in / Sign up

Export Citation Format

Share Document