scholarly journals Study of the main processes driving atmospheric CH<sub>4</sub> variability in a rural Spanish region

2017 ◽  
Author(s):  
Claudia Grossi ◽  
Felix R. Vogel ◽  
Roger Curcoll ◽  
Alba Àgueda ◽  
Arturo Vargas ◽  
...  

Abstract. Atmospheric concentrations of the two main greenhouse gases (GHGs), carbon dioxide (CO2) and methane (CH4), are continuously measured since November 2012 at the Spanish rural station of Gredos (GIC3), within the climate network ClimaDat, together with atmospheric radon (222Rn) tracer and meteorological parameters. The atmospheric variability of CH4 concentrations measured from 2013 to 2015 at GIC3 has been analyzed in this study. It is interpreted in relation to the variability of measured 222Rn concentrations, modelled 222Rn fluxes and modelled heights of the planetary boundary layer (PBLH) in the same period. In addition, nocturnal fluxes of CH4 were estimated using two methods: the Radon Tracer Method (RTM) and one based on the EDGARv4.2 bottom-up emission inventory. Both previous methods have been applied using the same footprints, calculated with the atmospheric transport model FLEXPARTv6.2. Results show that daily and seasonal changes in atmospheric concentrations of 222Rn (and the corresponding fluxes) can help to understand the atmospheric CH4 variability. On daily basis, the variation in the PBLH mainly drives changes in 222Rn and CH4 concentrations while, on monthly basis, their atmospheric variability seems to depend on changes in their emissions. The median value of RTM based methane fluxes (FR_CH4) is 0.17 mg CH4 m−2 h−1 with an absolute deviation of 0.08 mg CH4 m−2 h−1. Median methane fluxes based on bottom-up inventory (FE_CH4) is of 0.32 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1. Monthly FR_CH4 flux shows a seasonality which is not observed in the monthly FE_CH4 flux. During January–May FR_CH4 fluxes present a median value of 0.08 mg CH4 m−2 h−1 with an absolute deviation of 0.05 mg CH4 m−2 h−1 and a median value of 0.19 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1 during June–December. This seasonal doubling of the median methane fluxes calculated by RTM at the GIC3 area seems to be mainly related to the alternate presence of transhumant livestock in the GIC3 area. The results obtained in this study highlight the benefit of applying independent RTM to improve the seasonality of the emission factors from bottom-up inventories.

2018 ◽  
Vol 18 (8) ◽  
pp. 5847-5860 ◽  
Author(s):  
Claudia Grossi ◽  
Felix R. Vogel ◽  
Roger Curcoll ◽  
Alba Àgueda ◽  
Arturo Vargas ◽  
...  

Abstract. The ClimaDat station at Gredos (GIC3) has been continuously measuring atmospheric (dry air) mixing ratios of carbon dioxide (CO2) and methane (CH4), as well as meteorological parameters, since November 2012. In this study we investigate the atmospheric variability of CH4 mixing ratios between 2013 and 2015 at GIC3 with the help of co-located observations of 222Rn concentrations, modelled 222Rn fluxes and modelled planetary boundary layer heights (PBLHs). Both daily and seasonal changes in atmospheric CH4 can be better understood with the help of atmospheric concentrations of 222Rn (and the corresponding fluxes). On a daily timescale, the variation in the PBLH is the main driver for 222Rn and CH4 variability while, on monthly timescales, their atmospheric variability seems to depend on emission changes. To understand (changing) CH4 emissions, nocturnal fluxes of CH4 were estimated using two methods: the radon tracer method (RTM) and a method based on the EDGARv4.2 bottom-up emission inventory, both using FLEXPARTv9.0.2 footprints. The mean value of RTM-based methane fluxes (FR_CH4) is 0.11 mg CH4 m−2 h−1 with a standard deviation of 0.09 or 0.29 mg CH4 m−2 h−1 with a standard deviation of 0.23 mg CH4 m−2 h−1 when using a rescaled 222Rn map (FR_CH4_rescale). For our observational period, the mean value of methane fluxes based on the bottom-up inventory (FE_CH4) is 0.33 mg CH4 m−2 h−1 with a standard deviation of 0.08 mg CH4 m−2 h−1. Monthly CH4 fluxes based on RTM (both FR_CH4 and FR_CH4_rescale) show a seasonality which is not observed for monthly FE_CH4 fluxes. During January–May, RTM-based CH4 fluxes present mean values 25 % lower than during June–December. This seasonal increase in methane fluxes calculated by RTM for the GIC3 area appears to coincide with the arrival of transhumant livestock at GIC3 in the second half of the year.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 487 ◽  
Author(s):  
Takashi Chiba ◽  
Yumi Haga ◽  
Makoto Inoue ◽  
Osamu Kiguchi ◽  
Takeshi Nagayoshi ◽  
...  

We have developed a simple measuring system prototype that uses an unmanned aerial vehicle (UAV) and a non-dispersive infrared (NDIR) analyzer to detect regional carbon dioxide (CO2) concentrations and obtain vertical CO2 distributions. Here, we report CO2 measurement results for the lower troposphere above Ogata Village, Akita Prefecture, Japan (about 40° N, 140° E, approximately −1 m amsl), obtained with this UAV system. The actual flight observations were conducted at 500, 400, 300, 200, 100, and 10 m above the ground, at least once a month during the daytime from February 2018 to February 2019. The raw CO2 values from the NDIR were calibrated by two different CO2 standard gases and high-purity nitrogen (N2) gas (as a CO2 zero gas; 0 ppm). During the observation period, the maximum CO2 concentration was measured in February 2019 and the minimum in August 2018. In all seasons, CO2 concentrations became higher as the flight altitude was increased. The monthly pattern of observed CO2 changes is similar to that generally observed in the Northern Hemisphere as well as to surface CO2 changes simulated by an atmospheric transport model of the Japan Meteorological Agency. It is highly probable that these changes reflect the vegetation distribution around the study area.


2022 ◽  
Author(s):  
Dien Wu ◽  
Junjie Liu ◽  
Paul O. Wennberg ◽  
Paul I. Palmer ◽  
Robert R. Nelson ◽  
...  

Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many combustion sources. Previous efforts have combined satellite-based observations of multiple tracers to calculate their emission ratio (ER) for inferring combustion efficiency at regional to city scale. Very few studies have focused on burning efficiency at the sub-city scale or related it to emission sectors using space-based observations. Several factors are important for deriving spatially-resolved ERs from asynchronous satellite measurements including 1) variations in meteorological conditions induced by different overpass times, 2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), and 3) interferences from the biosphere and biomass burning. In this study, we extended an established emission estimate approach to arrive at spatially-resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI). To evaluate the influence of the confounding factors listed above and further explain the intra-urban variations in ERs, we leveraged a Lagrangian atmospheric transport model and an urban land cover classification dataset and reported ERCO from the sounding level to the overpass- and city- levels. We found that the difference in the overpass times and averaging kernels between OCO and TROPOMI strongly affect the estimated spatially-resolved ERCO. Specifically, a time difference of > 3 hours typically led to dramatic changes in the wind direction and shape of urban plumes and thereby making the calculation of accurate sounding-specific ERCO difficult. After removing those cases from consideration and applying a simple plume shift method when necessary, we discovered significant contrasts in combustion efficiencies between 1) two megacities versus two industry-oriented cities and 2) different regions within a city, based on six to seven nearly-coincident overpasses per city. Results suggest that the combustion efficiency for heavy industry in Los Angeles is slightly lower than its overall city-wide value (< 10 ppb-CO / ppm-CO2). In contrast, ERs related to the heavy industry in Shanghai are found to be much higher than Shanghai’s city-mean and more aligned with city-means of the two industry-oriented Chinese cities (approaching 20 ppb-CO / ppm-CO2). Although investigations based on a larger number of satellite overpasses are needed, our first analysis provides guidance for estimating intra-city gradients in combustion efficiency from future missions, such as those that will map column CO2 and CO concentration simultaneously with high spatiotemporal resolutions.


2017 ◽  
Vol 10 (12) ◽  
pp. 5017-5037 ◽  
Author(s):  
Sébastien Ars ◽  
Grégoire Broquet ◽  
Camille Yver Kwok ◽  
Yelva Roustan ◽  
Lin Wu ◽  
...  

Abstract. This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances between the different methane and acetylene sources. The results from these controlled experiments demonstrate that, when the targeted and tracer gases are not well collocated, this new approach provides a better estimate of the emission rates than the tracer release technique. As an example, the relative error between the estimated and actual emission rates is reduced from 32 % with the tracer release technique to 16 % with the combined approach in the case of a tracer located 60 m upwind of a single methane source. Further studies and more complex implementations with more advanced transport models and more advanced optimisations of their configuration will be required to generalise the applicability of the approach and strengthen its robustness.


2011 ◽  
Vol 11 (2) ◽  
pp. 6771-6803 ◽  
Author(s):  
G. Monteil ◽  
S. Houweling ◽  
E. J. Dlugockenky ◽  
G. Maenhout ◽  
B. H. Vaughn ◽  
...  

Abstract. The availability δ13C-CH4 measurements from atmospheric samples has significantly improved in recent years, which allows the construction of time series spanning up to about 2 decades. We have used these measurements to investigate the cause of the methane growth rate decline since 1980, with a special focus on the period 1998–2006 when the methane growth came to a halt. The constraints provided by the CH4 and δ13C-CH4 measurements are used to construct hypothetic source and sink scenarios, which are translated into corresponding atmospheric concentrations using the atmospheric transport model TM3 for evaluation against the measurements. The base scenario, composed of anthropogenic emissions according to Edgar 4, constant emissions from natural sources, and a constant atmospheric lifetime, overestimates the observed global growth rates of CH4 and δ13C-CH4 by, respectively, 10 ppb yr−1 and 0.02‰ yr−1 after the year 2000. It proves difficult to repair this inconsistency by modifying trends in emissions only, notably because a temporary reduction of isotopically light sources, such as natural wetlands, leads to a further increase of δ13C-CH4. Furthermore, our results are difficult to reconcile with the estimated increase of 5 Tg CH4 yr−1 in emissions from fossil fuel use in the period 2000–2005. On the other hand, we find that a moderate (less than 5% per decade) increase in the global OH concentration can bring the model in agreement with the measurements for plausible emission scenarios. This study demonstrates the value of global monitoring of methane isotopes, and calls for further investigation into the role OH and anthropogenic emissions to further improve our understanding of methane variations in recent years.


2011 ◽  
Vol 11 (17) ◽  
pp. 9141-9153 ◽  
Author(s):  
G. Monteil ◽  
S. Houweling ◽  
E. J. Dlugockenky ◽  
G. Maenhout ◽  
B. H. Vaughn ◽  
...  

Abstract. The availability δ13C-CH4 measurements from atmospheric samples has significantly improved in recent years, which allows the construction of time series spanning up to about 2 decades. We have used these measurements to investigate the cause of the methane growth rate decline since 1980, with a special focus on the period 1998–2006 when the methane growth came to a halt. The constraints provided by the CH4 and δ13C-CH4 measurements are used to construct hypothetical source and sink scenarios, which are translated into corresponding atmospheric concentrations using the atmospheric transport model TM3 for evaluation against the measurements. The base scenario, composed of anthropogenic emissions according to EDGAR 4.0, constant emissions from natural sources, and a constant atmospheric lifetime, overestimates the observed global growth rates of CH4 and δ13C-CH4 by, respectively, 10 ppb yr−1 and 0.02‰ yr−1 after the year 2000. It proves difficult to repair this inconsistency by modifying trends in emissions only, notably because a temporary reduction of isotopically light sources, such as natural wetlands, leads to a further increase of δ13C-CH4. Furthermore, our results are difficult to reconcile with the estimated increase of 5 Tg CH4 yr−1 in emissions from fossil fuel use in the period 2000–2005. On the other hand, we find that a moderate (less than 5% per decade) increase in the global OH concentration can bring the model in agreement with the measurements for plausible emission scenarios. This study demonstrates the value of global monitoring of methane isotopes, and calls for further investigation into the role OH and anthropogenic emissions to further improve our understanding of methane variations in recent years.


2019 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Grégoire Broquet ◽  
Julia Marshall ◽  
Valentin Clément ◽  
Armin Löscher ◽  
...  

Abstract. High-resolution atmospheric transport simulations were used to investigate the potential for detecting carbon dioxide (CO2) plumes of the city of Berlin and neighboring power stations with the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission, which is a proposed constellation of CO2 satellites with imaging capabilities. The potential for detecting plumes was studied for satellite images of CO2 alone or in combination with images of nitrogen dioxide (NO2) and carbon monoxide (CO) to investigate the added value of measurements of other gases co-emitted with CO2 that have better signal-to-noise ratios. The additional NO2 and CO images were either generated for instruments on the same CO2M satellites (2×2 km2 resolution) or for the Sentinel-5 instrument (7×7 km2) assumed to fly two hours earlier than CO2M. Realistic CO2, CO and NO2 fields were simulated at 1×1 km2 horizontal resolution with COSMO-GHG model for the year 2015, and used as input for an orbit simulator to generate synthetic observations of columns of CO2, CO and NO2 for constellations of up to six satellites. A new plume detection algorithm was applied to detect coherent structures in the images of CO2, NO2 or CO against instrument noise and variability in background levels. Although six satellites with an assumed swath of 250 km were sufficient to overpass Berlin on a daily basis, only about 50 out of 365 plumes per year could be observed in conditions suitable for emission estimation due to frequent cloud cover. With the CO2 instrument only 6 and 16 of these 50 plumes could be detected assuming a high (σVEG50 = 1.0 ppm) and low noise (σVEG50 = 0.5 ppm) scenario, respectively, because the CO2 signals were often too weak. A CO instrument with specifications similar to the Sentinel-5 mission performed worse than the CO2 instrument, while the number of detectable plumes could be significantly increased to about 35 plumes with an NO2 instrument. Using NO2 observations from the Sentinel-5 platform instead resulted in a significant spatial mismatch between NO2 and CO2 plumes due to the two hour time difference between Sentinel-5 and CO2M. The plumes of the coal-fired power plant Jänschwalde were easier to detect with the CO2 instrument (about 40–45 plumes per year), but again, an NO2 instrument performed significantly better (about 70 plumes). Auxiliary measurements of NO2 were thus found to greatly enhance the capability of detecting the location of CO2 plumes, which will be invaluable for the quantification of CO2 emissions from large point sources.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


2021 ◽  
Author(s):  
Stefan Hagemann ◽  
Ute Daewel ◽  
Volker Matthias ◽  
Tobias Stacke

&lt;p&gt;River discharge and the associated nutrient loads are important factors that influence the functioning of the marine ecosystem. Lateral inflows from land carrying fresh, nutrient-rich water determine coastal physical conditions and nutrient concentration and, hence, dominantly influence primary production in the system. Since this forms the basis of the trophic food web, riverine nutrient concentrations impact the variability of the whole coastal ecosystem. This process becomes even more relevant in systems like the Baltic Sea, which is almost decoupled from the open ocean and land-borne nutrients play a major role for ecosystem productivity on seasonal up to decadal time scales.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;In order to represent the effects of climate or land use change on nutrient availability, a coupled system approach is required to simulate the transport of nutrients across Earth system compartments. This comprises their transport within the atmosphere, the deposition and human application at the surface, the lateral transport over the land surface into the ocean and their dynamics and transformation in the marine ecosystem. In our study, we combine these processes in a modelling chain within the GCOAST (Geesthacht Coupled cOAstal model SysTem) framework for the northern European region. This modelling chain comprises:&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;ul&gt;&lt;li&gt;Simulation of emissions, atmospheric transport and deposition with the chemistry transport model CMAQ at 36 km grid resolution using atmospheric forcing from the coastDat3 data that have been generated with the regional climate model COSMO-CLM over Europe at 0.11&amp;#176; resolution using ERA-Interim re-analyses as boundary conditions&lt;/li&gt; &lt;li&gt;Simulation of inert processes at the land surface with the global hydrology model HydroPy (former MPI-HM), i.e. considering total nitrogen without any chemical reactions&lt;/li&gt; &lt;li&gt;Riverine transport with the Hydrological Discharge (HD) model at 0.0833&amp;#176; spatial resolution&lt;/li&gt; &lt;li&gt;Simulation of the North Sea and Baltic Sea ecosystems with 3D coupled physical-biogeochemical NPZD-model ECOSMO II at about 10 km resolution&lt;/li&gt; &lt;/ul&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We will present first results and their validation from this exercise.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document