scholarly journals Assessment of the TROPOMI tropospheric NO<sub>2</sub> product based on airborne APEX observations

2021 ◽  
Vol 14 (1) ◽  
pp. 615-646
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Gaia Pinardi ◽  
Ermioni Dimitropoulou ◽  
...  

Abstract. Sentinel-5 Precursor (S-5P), launched in October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) nadir-viewing spectrometer, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, and ozone. In the presented study, the TROPOMI tropospheric nitrogen dioxide (NO2) level-2 (L2) product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) has been validated over strongly polluted urban regions by comparison with coincident high-resolution Airborne Prism EXperiment (APEX) remote sensing observations (∼ 75 m × 120 m). Satellite products can be optimally assessed based on (APEX) airborne remote sensing observations, as a large amount of satellite pixels can be fully mapped at high accuracy and in a relatively short time interval, reducing the impact of spatiotemporal mismatches. In the framework of the S-5P validation campaign over Belgium (S5PVAL-BE), the APEX imaging spectrometer has been deployed during four mapping flights (26–29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO2. For each flight, 10 to 20 TROPOMI pixels were fully covered by approximately 2700 to 4000 APEX measurements within each TROPOMI pixel. The TROPOMI and APEX NO2 vertical column density (VCD) retrieval schemes are similar in concept. Overall, for the ensemble of the four flights, the standard TROPOMI NO2 VCD product is well correlated (R = 0.92) but biased negatively by −1.2 ± 1.2 × 1015 molec cm−2 or −14 ± 12 %, on average, with respect to coincident APEX NO2 retrievals. When replacing the coarse 1∘ × 1∘ the massively parallel (MP) version of the Tracer Model version 5 (TM5) a priori NO2 profiles by NO2 profile shapes from the Copernicus Atmospheric Monitoring Service (CAMS) regional chemistry transport model (CTM) ensemble at 0.1∘ × 0.1∘, R is 0.94 and the slope increases from 0.82 to 0.93. The bias is reduced to −0.1 ± 1.0 × 1015 molec cm−2 or −1.0 ± 12 %. The absolute difference is on average 1.3 × 1015 molec cm−2 (16 %) and 0.7 × 1015 molec cm−2 (9 %), when comparing APEX NO2 VCDs with TM5-MP-based and CAMS-based NO2 VCDs, respectively. Both sets of retrievals are well within the mission accuracy requirement of a maximum bias of 25 %–50 % for the TROPOMI tropospheric NO2 product for all individual compared pixels. Additionally, the APEX data set allows the study of TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO2 field. For a case study in the Antwerp region, the current TROPOMI data underestimate localized enhancements and overestimate background values by approximately 1–2 × 1015 molec cm−2 (10 %–20 %).

2020 ◽  
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Gaia Pinardi ◽  
Ermioni Dimitropoulou ◽  
...  

Abstract. Sentinel-5 Precursor (S-5P), launched in October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) nadir-viewing spectrometer, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, and ozone. In the presented study, the TROPOMI tropospheric nitrogen dioxide (NO2) L2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) has been validated over strongly polluted urban regions by comparison with coincident high-resolution Airborne Prism EXperiment (APEX) remote sensing observations (~75 m × 120 m). Satellite products can be optimally assessed based on (APEX) airborne remote sensing observations as a large amount of satellite pixels can be fully mapped at high accuracy and in a relatively short time interval, reducing the impact of spatio-temporal mismatches. In the framework of the S5PVAL-BE campaign, the APEX imaging spectrometer has been deployed during four mapping flights (26–29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO2. For each flight, 10 to 20 TROPOMI pixels were fully covered by approximately 2800 to 4000 APEX measurements within each TROPOMI pixel. The TROPOMI and APEX NO2 vertical column density (VCD) retrieval schemes are similar in concept. Overall for the ensemble of the four flights, the standard TROPOMI NO2 VCD product is well correlated (R = 0.92) but biased negatively by −1.2 ± 1.2 × 1015 molec cm−2 or −14 % ± 12 %, on average, with respect to coincident APEX NO2 retrievals. When replacing the coarse 1° × 1° TM5-MP a priori NO2 profiles by NO2 profile shapes from the CAMS regional CTM ensemble at 0.1° × 0.1°, the slope increases by 11 % to 0.93, and the bias is reduced to −0.1 ± 1.0 × 1015 molec cm−2 or −1.0 % ± 12 %. When the absolute value of the difference is taken, the bias is 1.3 × 1015 molec cm−2 or 16 %, and 0.7 × 1015 molec cm−2 or 9 % on average, when comparing APEX NO2 VCDs with TM5-MP-based and CAMS-based NO2 VCDs, respectively. Both sets of retrievals are well within the accuracy requirement of a maximum bias of 25–50 % for the TROPOMI tropospheric NO2 product for all individual compared pixels. Additionally, the APEX data set allows the study of TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO2 field. The amount of underestimation of peak plume values and overestimation of urban background values in the TROPOMI data is in the order of 1–2 × 1015 molec cm−2 on average, or 10 %–20 %, in case of an urban scene.


2020 ◽  
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Gaia Pinardi ◽  
Ermioni Dimitropoulou ◽  
...  

&lt;p&gt;Sentinel-5 Precursor (S-5P), launched in October 2017, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality and climate. Its characteristics, such as the fine spatial resolution, introduce many new opportunities and challenges, requiring to carefully assess the quality and validity of the generated data products by comparison with independent reference observations.&lt;/p&gt;&lt;p&gt;In the presented study, the S-5P/TROPOMI tropospheric nitrogen dioxide (NO&lt;sub&gt;2&lt;/sub&gt;) L2 product (3.5 x 7 km&lt;sup&gt;2 &lt;/sup&gt;at nadir observations) has been validated over strongly polluted urban regions based on comparison with coincident high-resolution airborne remote sensing observations (~100 m&lt;sup&gt;2&lt;/sup&gt;). Airborne imagers are able to map the horizontal distribution of tropospheric NO&lt;sub&gt;2&lt;/sub&gt;, as well as its strong spatio-temporal variability, at high resolution and with high accuracy. Satellite products can be optimally assessed based on airborne observations as a large amount of satellite pixels can be fully mapped in a relatively short time interval, reducing the impact of spatiotemporal mismatches. Additionally, such data sets allow to study the TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO&lt;sub&gt;2&lt;/sub&gt; field.&lt;/p&gt;&lt;p&gt;In the framework of the S5PVAL-BE campaign, the Airborne Prism EXperiment (APEX) imaging spectrometer has been deployed during four mapping flights (26-29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO&lt;sub&gt;2&lt;/sub&gt;. Per flight, 15 to 20 TROPOMI pixels were fully covered by approximately 5000 APEX measurements for each TROPOMI pixel. Mapping flights and ancillary ground-based measurements (car-mobile DOAS, MAX-DOAS, CIMEL, ceilometer, etc.) were conducted in coincidence with the overpass of TROPOMI (typically between noon and 2 PM UTC). The TROPOMI and APEX NO&lt;sub&gt;2&lt;/sub&gt; vertical column density (VCD) retrieval schemes are similar in concept. Retrieved NO&lt;sub&gt;2 &lt;/sub&gt;VCDs were georeferenced, gridded and intercompared. As strongly polluted areas typically exhibit strong NO&lt;sub&gt;2 &lt;/sub&gt;vertical gradients (besides the strong horizontal gradients), a custom TROPOMI tropospheric NO&lt;sub&gt;2 &lt;/sub&gt;product was computed and compared as well with APEX by replacing the coarse 1&amp;#176; x 1&amp;#176; a priori NO&lt;sub&gt;2 &lt;/sub&gt;vertical profiles from TM5-MP by NO&lt;sub&gt;2&lt;/sub&gt; profile shapes from the CAMS regional CTM ensemble at 0.1&amp;#176; x 0.1&amp;#176;.&lt;/p&gt;&lt;p&gt;Overall for the ensemble of the four flights, the standard TROPOMI NO&lt;sub&gt;2&lt;/sub&gt; VCD product is well correlated (R= 0.94) but biased low (slope = 0.73) with respect to APEX NO&lt;sub&gt;2&lt;/sub&gt; retrievals. When replacing the TM5-MP a priori NO&lt;sub&gt;2&lt;/sub&gt; profiles by CAMS-based profiles, the slope increases to 0.88. When calculating the NO&lt;sub&gt;2&lt;/sub&gt; VCD differences, the bias is on average -1.3 &amp;#177; 1.2 x 10&lt;sup&gt;15&lt;/sup&gt; molec cm&lt;sup&gt;-2&lt;/sup&gt; or -16% &amp;#177; 11% for the difference between APEX NO&lt;sub&gt;2&lt;/sub&gt; VCDs and the standard TROPOMI NO&lt;sub&gt;2&lt;/sub&gt; VCD product. The bias is substantially reduced when replacing the coarse TM5-MP a priori NO&lt;sub&gt;2&lt;/sub&gt; profiles by CAMS-based profiles, being -0.1 &amp;#177; 1.1&amp;#160; x 10&lt;sup&gt;15&lt;/sup&gt; molec cm&lt;sup&gt;-2&lt;/sup&gt; or -0.1% &amp;#177; 11%. Both sets of retrievals are well within the accuracy requirement of a maximum bias of 25-50% for the TROPOMI tropospheric NO&lt;sub&gt;2&lt;/sub&gt; product for all individual compared pixels.&lt;/p&gt;


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christiane Schön ◽  
Claudia Reule ◽  
Katharina Knaub ◽  
Antje Micka ◽  
Manfred Wilhelm ◽  
...  

Abstract Background The assessment of improvement or maintenance of joint health in healthy subjects is a great challenge. The aim of the study was the evaluation of a joint stress test to assess joint discomfort in subjects with activity-related knee joint discomfort (ArJD). Results Forty-five subjects were recruited to perform the single-leg-step-down (SLSD) test (15 subjects per group). Subjects with ArJD of the knee (age 22–62 years) were compared to healthy subjects (age 24–59 years) with no knee joint discomfort during daily life sporting activity and to subjects with mild-to-moderate osteoarthritis of the knee joint (OA, Kellgren score 2–3, age 42–64 years). The subjects performed the SLSD test with two different protocols: (I) standardization for knee joint discomfort; (II) standardization for load on the knee joint. In addition, range of motion (ROM), reach test, acute pain at rest and after a single-leg squat and knee injury, and osteoarthritis outcome score (KOOS) were assessed. In OA and ArJD subjects, knee joint discomfort could be reproducibly induced in a short time interval of less than 10 min (200 steps). In healthy subjects, no pain was recorded. A clear differentiation between study groups was observed with the SLSD test (maximal step number) as well as KOOS questionnaire, ROM, and reach test. In addition, a moderate to good intra-class correlation was shown for the investigated outcomes. Conclusions These results suggest the SLSD test is a reliable tool for the assessment of knee joint health function in ArJD and OA subjects to study the improvements in their activities. Further, this model can be used as a stress model in intervention studies to study the impact of stress on knee joint health function.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 15-25
Author(s):  
Hervé Philippe ◽  
Anne Chenuil ◽  
André Adoutte

Most of the major invertebrate phyla appear in the fossil record during a relatively short time interval, not exceeding 20 million years (Myr), 540-520 Myr ago. This rapid diversification is known as the `Cambrian explosion'. In the present paper, we ask whether molecular phylogenetic reconstruction provides confirmation for such an evolutionary burst. The expectation is that the molecular phylogenetic trees should take the form of a large unresolved multifurcation of the various animal lineages. Complete 18S rRNA sequences of 69 extant representatives of 15 animal phyla were obtained from data banks. After eliminating a major source of artefact leading to lack of resolution in phylogenetic trees (mutational saturation of sequences), we indeed observe that the major lines of triploblast coelomates (arthropods, molluscs, echinoderms, chordates...) are very poorly resolved i.e. the nodes defining the various clades are not supported by high bootstrap values. Using a previously developed procedure consisting of calculating bootstrap proportions of each node of the tree as a function of increasing amount of nucleotides (Lecointre, G., Philippe, H. Le, H. L. V. and Le Guyader, H. (1994) Mol. Phyl. Evol., in press) we obtain a more informative indication of the robustness of each node. In addition, this procedure allows us to estimate the number of additional nucleotides that would be required to resolve confidently the currently uncertain nodes; this number turns out to be extremely high and experimentally unfeasible. We then take this approach one step further: using parameters derived from the above analysis, assuming a molecular clock and using palaeontological dates for calibration, we establish a relationship between the number of sites contained in a given data set and the time interval that this data set can confidently resolve (with 95% bootstrap support). Under these assumptions, the presently available 18S rRNA database cannot confidently resolve cladogenetic events separated by less than about 40 Myr. Thus, at the present time, the potential resolution by the palaeontological approach is higher than that by the molecular one.


Author(s):  
İsmail Canöz

This study examines the effect of US monetary growth on Bitcoin trading volume. To achieve this purpose, firstly, the symmetric causality test is used. Following this test, another symmetric causality test is used to reveal a time-varying causal effect between variables. The data set covers the period from July 2010 to July 2019. The results of the first symmetric causality test, which considers the time interval of the study data as a whole, show that there is no causal relationship between variables. According to the results of the second causality test, these support the previous results substantially. However, an interesting detail is the causal relationship between variables for the period between April 2019 and July 2019. The reason for this relationship could be that investors who are indecisive during the current economic uncertainty add Bitcoin to their portfolios in response to the Federal Reserve's decisions.


2020 ◽  
Vol 17 (10) ◽  
pp. 2853-2874 ◽  
Author(s):  
David Holl ◽  
Eva-Maria Pfeiffer ◽  
Lars Kutzbach

Abstract. With respect to their role in the global carbon cycle, natural peatlands are characterized by their ability to sequester atmospheric carbon. This trait is strongly connected to the water regime of these ecosystems. Large parts of the soil profile in natural peatlands are water saturated, leading to anoxic conditions and to a diminished decomposition of plant litter. In functioning peatlands, the rate of carbon fixation by plant photosynthesis is larger than the decomposition rate of dead organic material. Over time, the amount of carbon that remains in the soil and is not converted back to carbon dioxide grows. Land use of peatlands often goes along with water level manipulations and thereby with alterations of carbon flux dynamics. In this study, carbon dioxide (CO2) and methane (CH4) flux measurements from a bog site in northwestern Germany that has been heavily degraded by peat mining are presented. Two contrasting types of management have been implemented at the site: (1) drainage during ongoing peat harvesting on one half of the central bog area and (2) rewetting on the other half that had been taken out of use shortly before measurements commenced. The presented 2-year data set was collected with an eddy covariance (EC) system set up on a central railroad dam that divides the two halves of the (former) peat harvesting area. We used footprint analysis to split the obtained CO2 and CH4 flux time series into data characterizing the gas exchange dynamics of both contrasting land use types individually. The time series gaps resulting from data division were filled using the response of artificial neural networks (ANNs) to environmental variables, footprint variability, and fuzzy transformations of seasonal and diurnal cyclicity. We used the gap-filled gas flux time series from 2 consecutive years to evaluate the impact of rewetting on the annual vertical carbon balances of the cutover bog. Rewetting had a considerable effect on the annual carbon fluxes and led to increased CH4 and decreased CO2 release. The larger relative difference between cumulative CO2 fluxes from the rewetted (13±6 mol m−2 a−1) and drained (22±7 mol m−2 a−1) section occurred in the second observed year when rewetting apparently reduced CO2 emissions by 40 %. The absolute difference in annual CH4 flux sums was more similar between both years, while the relative difference of CH4 release between the rewetted (0.83±0.15 mol m−2 a−1) and drained (0.45±0.11 mol m−2 a−1) section was larger in the first observed year, indicating a maximum increase in annual CH4 release of 84 % caused by rewetting at this particular site during the study period.


2019 ◽  
Vol 147 (9) ◽  
pp. 3445-3466 ◽  
Author(s):  
Andrés A. Pérez Hortal ◽  
Isztar Zawadzki ◽  
M. K. Yau

Abstract We introduce a new technique for the assimilation of precipitation observations, the localized ensemble mosaic assimilation (LEMA). The method constructs an analysis by selecting, for each vertical column in the model, the ensemble member with precipitation at the ground that is locally closest to the observed values. The proximity between the modeled and observed precipitation is determined by the mean absolute difference of precipitation intensity, converted to reflectivity and measured over a spatiotemporal window centered at each grid point of the model. The underlying hypothesis of the approach is that the ensemble members that are locally closer to the observed precipitation are more probable to be closer to the “truth” in the state variables than the other members. The initial conditions for the new forecast are obtained by nudging the background states toward the mosaic of the closest ensemble members (analysis) over a 30 min time interval, reducing the impacts of the imbalances at the boundaries between the different selected members. The potential of the method is studied using observing system simulation experiments (OSSEs) employing a small ensemble of 20 members. The ensemble is produced by the WRF Model, run at a horizontal grid spacing of 20 km. The experiments lend support to the validity of the hypothesis and allow the determination of the optimal parameters for the approach. In the context of OSSE, this new data assimilation technique is able to produce forecasts with considerable and long-lived error reductions in the fields of precipitation, temperature, humidity, and wind.


2014 ◽  
Vol 7 (8) ◽  
pp. 2757-2773 ◽  
Author(s):  
M. Costa-Surós ◽  
J. Calbó ◽  
J. A. González ◽  
C. N. Long

Abstract. The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.


2014 ◽  
Vol 14 (15) ◽  
pp. 7909-7927 ◽  
Author(s):  
Y. Kanaya ◽  
H. Irie ◽  
H. Takashima ◽  
H. Iwabuchi ◽  
H. Akimoto ◽  
...  

Abstract. We conducted long-term network observations using standardized Multi-Axis Differential optical absorption spectroscopy (MAX-DOAS) instruments in Russia and ASia (MADRAS) from 2007 onwards and made the first synthetic data analysis. At seven locations (Cape Hedo, Fukue and Yokosuka in Japan, Hefei in China, Gwangju in Korea, and Tomsk and Zvenigorod in Russia) with different levels of pollution, we obtained 80 927 retrievals of tropospheric NO2 vertical column density (TropoNO2VCD) and aerosol optical depth (AOD). In the technique, the optimal estimation of the TropoNO2VCD and its profile was performed using aerosol information derived from O4 absorbances simultaneously observed at 460–490 nm. This large data set was used to analyze NO2 climatology systematically, including temporal variations from the seasonal to the diurnal scale. The results were compared with Ozone Monitoring Instrument (OMI) satellite observations and global model simulations. Two NO2 retrievals of OMI satellite data (NASA ver. 2.1 and Dutch OMI NO2 (DOMINO) ver. 2.0) generally showed close correlations with those derived from MAX-DOAS observations, but had low biases of up to ~50%. The bias was distinct when NO2 was abundantly present near the surface and when the AOD was high, suggesting a possibility of incomplete accounting of NO2 near the surface under relatively high aerosol conditions for the satellite observations. Except for constant biases, the satellite observations showed nearly perfect seasonal agreement with MAX-DOAS observations, suggesting that the analysis of seasonal features of the satellite data were robust. Weekend reduction in the TropoNO2VCD found at Yokosuka and Gwangju was absent at Hefei, implying that the major sources had different weekly variation patterns. While the TropoNO2VCD generally decreased during the midday hours, it increased exceptionally at urban/suburban locations (Yokosuka, Gwangju, and Hefei) during winter. A global chemical transport model, MIROC-ESM-CHEM (Model for Interdisciplinary Research on Climate–Earth System Model–Chemistry), was validated for the first time with respect to background NO2 column densities during summer at Cape Hedo and Fukue in the clean marine atmosphere.


2014 ◽  
Vol 14 (4) ◽  
pp. 2139-2153 ◽  
Author(s):  
S. Crumeyrolle ◽  
G. Chen ◽  
L. Ziemba ◽  
A. Beyersdorf ◽  
L. Thornhill ◽  
...  

Abstract. During the NASA DISCOVER-AQ campaign over the US Baltimore, MD–Washington, D.C., metropolitan area in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in situ profiles were coincident with ground-based remote sensing (AERONET) and in situ (PM2.5) measurements. Here, we use this data set to study the correlation between the PM2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD550 nm) calculated with the extinction (550 nm) measured during the in situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces significant uncertainties in PM2.5 estimates based on column-integrated measurements (overestimation of PM2.5 by a factor of 5). This suggests that the use of active remote sensing techniques would dramatically improve air quality retrievals. Indeed, the relationship between the AOD550 nm and the PM2.5 is strongly improved by accounting for the aerosol present in and above the BL (i.e., integrating the aerosol loading from the surface to the top of the BuL). Since more than 15% of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f(RH)amb (ratio of scattering coefficient at ambient relative humidity (RH) to scattering coefficient at low RH; see Sect. 3.2) is used to study the impact of the aerosol hygroscopicity on the PM2.5 retrievals. The results indicate that PM2.5 can be predicted within a factor up to 2 even when the vertical variability of the f(RH)amb is assumed to be negligible. Moreover, f(RH = 80%) and RH measurements performed at the ground may be used to estimate the f(RH)amb during dry conditions (RHBL < 55%).


Sign in / Sign up

Export Citation Format

Share Document