scholarly journals Radiation fog formation alerts using attenuated backscatter power from automatic Lidars and ceilometers

2016 ◽  
Author(s):  
Martial Haeffelin ◽  
Quentin Laffineur ◽  
Juan-Antonio Bravo-Aranda ◽  
Marc-Antoine Drouin ◽  
Juan-Andrés Casquero-Vera ◽  
...  

Abstract. Radiation fog occurs over many locations around the world in stable atmospheric conditions. Air traffic at busy airports can be significantly disrupted because low visibility at the ground makes it unsafe to take off, land and taxi on the ground. Current numerical weather prediction forecasts are able to predict general conditions favorable for fog formation, but not the exact time or location of fog occurrence. A selected set of observations available in near realtime at strategic locations could also be useful to track the evolution of key processes and key parameters that drive fog formation. Such observations could complement the information predicted by NWP models that is made available to airport forecasters in support of their fog forecast. This paper presents an experimental setup based on collocated automatic lidar and ceilometer measurements, relative humidity measurements and horizontal visibility measurements to study hygroscopic growth of fog condensation nuclei. This process can take several minutes to hours and can be tracked using lidar or ceilometer attenuated backscatter profiles. Based on hygroscopic growth laws we derive a set of parameters that can be used to provide alerts minutes to hours prior to formation of radiation fog. We present an algorithm that uses the temporal evolution of attenuated backscatter measurements to derive pre-fog formation alerts. The performance of the algorithm is tested on 45 independent pre-fog situations at two locations (near Paris, France and Brussels, Belgium). We find that pre-fog alerts occur predominantly 10–50 min prior to fog formation at an altitude ranging 0 to 100 m above ground. In a few cases, alerts can occur up to 100 min prior to fog formation. Alert durations are found to be sensitive to relative humidity conditions found a few hours prior to the fog.

2016 ◽  
Vol 9 (11) ◽  
pp. 5347-5365 ◽  
Author(s):  
Martial Haeffelin ◽  
Quentin Laffineur ◽  
Juan-Antonio Bravo-Aranda ◽  
Marc-Antoine Drouin ◽  
Juan-Andrés Casquero-Vera ◽  
...  

Abstract. Radiation fog occurs over many locations around the world in stable atmospheric conditions. Air traffic at busy airports can be significantly disrupted because low visibility at the ground makes it unsafe to take off, land and taxi on the ground. Current numerical weather prediction forecasts are able to predict general conditions favorable for fog formation, but not the exact time or location of fog occurrence. A selected set of observations available in near-real time at strategic locations could also be useful to track the evolution of key processes and key parameters that drive fog formation. Such observations could complement the information predicted by numerical weather prediction (NWP) models that is made available to airport forecasters in support of their fog forecast. This paper presents an experimental setup based on collocated automatic lidar and ceilometer measurements, relative humidity measurements and horizontal visibility measurements to study hygroscopic growth of fog condensation nuclei. This process can take several minutes to hours, and can be tracked using lidar- or ceilometer-attenuated backscatter profiles. Based on hygroscopic growth laws we derive a set of parameters that can be used to provide alerts minutes to hours prior to formation of radiation fog. We present an algorithm that uses the temporal evolution of attenuated backscatter measurements to derive pre-fog formation alerts. The performance of the algorithm is tested on 45 independent pre-fog situations at two locations (near Paris, France, and Brussels, Belgium). We find that an alert for pre-fog conditions predominantly occurs 10–50 min prior to fog formation at an altitude ranging 0 to 100 m above ground. In a few cases, alerts can occur up to 100 min prior to fog formation. Alert durations are found to be sensitive to the relative humidity conditions found a few hours prior to the fog.


2014 ◽  
Vol 7 (2) ◽  
pp. 1393-1455
Author(s):  
X. J. Sun ◽  
R. W. Zhang ◽  
G. J. Marseille ◽  
A. Stoffelen ◽  
D. Donovan ◽  
...  

Abstract. The ESA Aeolus mission aims to measure wind profiles from space. In preparation for launch we aim to assess the expected bias in retrieved winds from the Mie and Rayleigh channel signals induced by atmospheric heterogeneity. Observation biases are known to be detrimental when gone undetected in Numerical Weather Prediction (NWP). Aeolus processing equipment should therefore be prepared to detect heterogeneous atmospheric scenes and take measures, e.g., reject or reduce the weight of observations when used in NWP. Radiosondes provide the wind vector at about 10 m resolution. We present a method to simulate co-located cloud and aerosol optical properties from radiosonde observations. We show that cloud layers can be detected along the radiosonde path from radiosonde measured relative humidity and temperature. A parameterization for aerosol backscatter and extinction along the radiosonde path is presented based on a climatological aerosol backscatter profile and radiosonde relative humidity. The resulting high-resolution database of atmospheric wind and optical properties serves as input for Aeolus wind simulations. It is shown that Aeolus wind error variance grows quadratically with bin size and the wind-shear over the bin. Strong scattering aerosol or cloud layers may cause biases exceeding 1ms−1 for typical tropospheric conditions and 1 km Mie channel bin size, i.e., substantially larger than the mission bias requirement of 0.4 ms−1. Advanced level-2 processing of Aeolus winds including estimation of atmosphere optical properties is needed to detect regions with large heterogeneity, potentially yielding biased winds. Besides applicable for Aeolus the radiosonde database of co-located high-resolution wind and cloud information can be used for the validation of atmospheric motion wind vectors (AMV) or to correct their height assignment errors.


2019 ◽  
Vol 19 (3) ◽  
pp. 1505-1520 ◽  
Author(s):  
Sophie L. Haslett ◽  
Jonathan W. Taylor ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
...  

Abstract. Water in the atmosphere can exist in the solid, liquid or gas phase. At high humidities, if the aerosol population remains constant, more water vapour will condense onto the particles and cause them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) at λ=525 nm for 63 relative humidity profiles. The median AOD in the region from these calculations was 0.36, the same as that measured by sun photometers at the ground site. The spread in the calculated AODs was less than the spread from the sun photometer measurements. In both cases, values above 0.5 were seen predominantly in the mornings and corresponded with high humidities. Observations of modest variations in aerosol load and composition are unable to explain the high and variable AODs observed using sun photometers, which can only be recreated by accounting for the very elevated and variable relative humidities (RHs) in the boundary layer. Most importantly, the highest AODs present in the mornings are not possible without the presence of high RH in excess of 95 %. Humid layers are found to have the most significant impact on AOD when they reach RH greater than 98 %, which can result in a wet AOD more than 1.8 times the dry AOD. Unsaturated humid layers were found to reach these high levels of RH in 37 % of observed cases. It can therefore be concluded that the high AODs present across the region are driven by the high humidities and are then moderated by changes in aerosol abundance. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.


2018 ◽  
Author(s):  
Sophie L. Haslett ◽  
Jonathan W. Taylor ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
...  

Abstract. Water in the atmosphere exists as both vapour and liquid water contained in particles. At high humidities, more water vapour condenses onto particles and causes them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) for 63 relative humidity profiles. A static aerosol profile was assumed. Therefore, these results show the extent of the AOD frequency distribution that can be explained by humidity alone, rather than predicting actual AOD values. The median AOD in the region from these calculations was 0.46, which compares to a median of 0.36 measured by sun photometers. The shape of the AOD frequency distribution was largely comparable to that of the sun photometer measurements, demonstrating that relative humidity is able to account for a large part of the region's AOD variability. Humid layers are found to have the most significant impact on AOD when they reach relative humidities greater than 98 %, which can result in a wet AOD up to seven times larger than the dry AOD. Unsaturated humid layers were found to reach these high levels of relative humidity in 37 % of observed cases. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


2016 ◽  
Author(s):  
Sara D. Forestieri ◽  
Gavin C. Cornwell ◽  
Taylor M. Helgestad ◽  
Kathryn A. Moore ◽  
Christopher Lee ◽  
...  

Abstract. The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions, concurrently with online single particle and bulk aerosol composition measurements. During both microcosm experiments, the observed bulk average GF(85 %) values were depressed substantially relative to pure, inorganic sea salt, by 10 to 19 %, with a one (indoor MART) and six (outdoor MART) day lag between GF(85 %) depression and the peak chlorophyll-a concentrations. The fraction of organiccontaining SSA particles generally increased after the peak of the phytoplankton blooms. The GF(85 %) values were inversely correlated with the fraction of particles containing organic or other biological markers. This indicates these particles were less hygroscopic than the particles identified as predominately sea salt containing and demonstrates a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.


2013 ◽  
Vol 6 (2) ◽  
pp. 3581-3610
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at a-synoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range (1–2 h). The results are in agreement with the set-up of the numerical experiment.


2017 ◽  
Vol 10 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Wengang Zhang ◽  
Guirong Xu ◽  
Yuanyuan Liu ◽  
Guopao Yan ◽  
Dejun Li ◽  
...  

Abstract. This paper is to investigate the uncertainties of microwave radiometer (MWR) retrievals in snow conditions and also explore the discrepancies of MWR retrievals in zenith and off-zenith observations. The MWR retrievals were averaged in a ±15 min period centered at sounding times of 00:00 and 12:00 UTC and compared with radiosonde observations (RAOBs). In general, the MWR retrievals have a better correlation with RAOB profiles in off-zenith observations than in zenith observations, and the biases (MWR observations minus RAOBs) and root mean square errors (RMSEs) between MWR and RAOB are also clearly reduced in off-zenith observations. The biases of temperature, relative humidity, and vapor density decrease from 4.6 K, 9 %, and 1.43 g m−3 in zenith observations to −0.6 K, −2 %, and 0.10 g m−3 in off-zenith observations, respectively. The discrepancies between MWR retrievals and RAOB profiles by altitude present the same situation. Cases studies show that the impact of snow on accuracies of MWR retrievals is more serious in heavy snowfall than in light snowfall, but off-zenith observation can mitigate the impact of snowfall. The MWR measurements become less accurate in snowfall mainly due to the retrieval algorithm, which does not consider the effect of snow, and the accumulated snow on the top of the radome increases the signal noise of MWR measurements. As the snowfall drops away by gravity on the sides of the radome, the off-zenith observations are more representative of the atmospheric conditions for RAOBs.


2022 ◽  
Vol 22 (1) ◽  
pp. 319-333
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC.


Sign in / Sign up

Export Citation Format

Share Document