scholarly journals Theoretical description of functionality, applications, and limitations of SO<sub>2</sub> cameras for the remote sensing of volcanic plumes

2010 ◽  
Vol 3 (3) ◽  
pp. 733-749 ◽  
Author(s):  
C. Kern ◽  
F. Kick ◽  
P. Lübcke ◽  
L. Vogel ◽  
M. Wöhrbach ◽  
...  

Abstract. The SO2 camera is a novel device for the remote sensing of volcanic emissions using solar radiation scattered in the atmosphere as a light source for the measurements. The method is based on measuring the ultra-violet absorption of SO2 in a narrow wavelength window around 310 nm by employing a band-pass interference filter and a 2 dimensional UV-sensitive CCD detector. The effect of aerosol scattering can in part be compensated by additionally measuring the incident radiation around 325 nm, where the absorption of SO2 is about 30 times weaker, thus rendering the method applicable to optically thin plumes. For plumes with high aerosol optical densities, collocation of an additional moderate resolution spectrometer is desirable to enable a correction of radiative transfer effects. The ability to deliver spatially resolved images of volcanic SO2 distributions at a frame rate on the order of 1 Hz makes the SO2 camera a very promising technique for volcanic monitoring and for studying the dynamics of volcanic plumes in the atmosphere. This study gives a theoretical basis for the pertinent aspects of working with SO2 camera systems, including the measurement principle, instrument design, data evaluation and technical applicability. Several issues are identified that influence camera calibration and performance. For one, changes in the solar zenith angle lead to a variable light path length in the stratospheric ozone layer and therefore change the spectral distribution of scattered solar radiation incident at the Earth's surface. The varying spectral illumination causes a shift in the calibration of the SO2 camera's results. Secondly, the lack of spectral resolution inherent in the measurement technique leads to a non-linear relationship between measured weighted average optical density and the SO2 column density. Thirdly, as is the case with all remote sensing techniques that use scattered solar radiation as a light source, the radiative transfer between the sun and the instrument is variable, with both "radiative dilution" as well as multiple scattering occurring. These effects can lead to both, over or underestimation of the SO2 column density by more than an order of magnitude. As the accurate assessment of volcanic emissions depends on our ability to correct for these issues, recommendations for correcting the individual effects during data analysis are given. Aside from the above mentioned intrinsic effects, the particular technical design of the SO2 camera can also greatly influence its performance, depending on the setup chosen. A general description of an instrument setup is given, and the advantages and disadvantages of certain specific instrument designs are discussed. Finally, several measurement examples are shown and possibilities to combine SO2 camera measurements with other remote sensing techniques are explored.

2010 ◽  
Vol 3 (1) ◽  
pp. 531-578 ◽  
Author(s):  
C. Kern ◽  
F. Kick ◽  
P. Lübcke ◽  
L. Vogel ◽  
M. Wöhrbach ◽  
...  

Abstract. The SO2 camera is a novel technique for the remote sensing of volcanic emissions using solar radiation scattered in the atmosphere as a light source for the measurements. The method is based on measuring the ultra-violet absorption of SO2 in a narrow wavelength window around 310 nm by employing a band-pass interference filter and a 2-D UV-sensitive CCD detector. The effect of aerosol scattering can be eliminated by additionally measuring the incident radiation around 325 nm where the absorption of SO2 is no longer significant, thus rendering the method applicable to optically opaque plumes. The ability to deliver spatially resolved images of volcanic SO2 distributions at a frame rate on the order of 1 Hz makes the SO2 camera a very promising technique for volcanic monitoring and for studying the dynamics of volcanic plumes in the atmosphere. This study gives a theoretical basis for the pertinent aspects of working with SO2 camera systems, including the measurement principle, instrument design, data evaluation and technical applicability. Several issues are identified that influence camera calibration and performance. For one, changes in the solar zenith angle lead to a variable light path length in the stratospheric ozone layer and therefore change the spectral distribution of scattered solar radiation incident at the Earth's surface. The thus varying spectral illumination causes a shift in the calibration of the SO2 camera's results. Secondly, the lack of spectral resolution inherent in the measurement technique leads to a non-linear relationship between measured weighted average optical density and the SO2 column density. In addition, as is the case with all remote sensing techniques that use scattered solar radiation as a light source, the radiative transfer between the sun and the instrument is variable, with both radiative dilution as well as multiple scattering occurring. These effects can lead to both, over or underestimation of the SO2 column density by more than an order of magnitude. As the accurate assessment of volcanic emissions depends on our ability to correct for these issues, recommendations for correcting the individual effects during data analysis are given. Aside from the above mentioned intrinsic effects, the particular technical design of the SO2 camera can also greatly influence its performance, depending on the chosen setup. A general description of the instrument setup is given, and the advantages and disadvantages of certain specific instrument designs are discussed. Finally, several measurement examples are shown and possibilities to combine SO2 camera measurements with other remote sensing techniques are explored.


2018 ◽  
Author(s):  
Florian Ewald ◽  
Tobias Zinner ◽  
Tobias Kölling ◽  
Bernhard Mayer

Abstract. Convective clouds play an essential role for Earth's climate as well as for regional weather events since they have a large influence on the radiation budget and the water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, over cloud droplet growth to changes in cloud radiative properties, remote sensing techniques become more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace to infer cloud optical thickness and droplet size from cloud tops, profiles of droplet size have remained largely uncharted territory for passive remote sensing. In principle they could be derived from observations of cloud sides, but faced with with the small-scale structure of cloud sides, classical passive remote sensing techniques are rendered inappropriate. In this work the feasibility is demonstrated to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. Central aspect of this work on its path to a working cloud side retrieval is the analysis of the impact unknown cloud surface geometry has on effective radius retrievals. Using extensive 3D radiative transfer calculations on the basis of realistic droplet size resolving cloud simulations, the sensitivity of reflected solar radiation to cloud droplet size is examined. Sensitivity is enhanced by considering the pixel surrounding to resolve ambiguities caused by illumination and cloud geometry. Based on these findings, a statistical approach is used to provide an effective radius retrieval. An in-depth sensitivity study of the presented approach on the basis of a wide range of radiative transfer test cases demonstrates the feasibility to retrieve cloud particle size profiles from cloud sides.


2019 ◽  
Vol 12 (2) ◽  
pp. 1183-1206 ◽  
Author(s):  
Florian Ewald ◽  
Tobias Zinner ◽  
Tobias Kölling ◽  
Bernhard Mayer

Abstract. Convective clouds play an essential role for Earth's climate as well as for regional weather events since they have a large influence on the radiation budget and the water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, from cloud droplet growth to changes in cloud radiative properties, remote sensing techniques become more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace for inferring cloud optical thickness and droplet size from cloud tops, profiles of droplet size have remained largely uncharted territory for passive remote sensing. In principle they could be derived from observations of cloud sides, but faced with the small-scale heterogeneity of cloud sides, “classical” passive remote sensing techniques are rendered inappropriate. In this work the feasibility is demonstrated to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. Central aspect of this work on its path to a working cloud side retrieval is the analysis of the impact unknown cloud surface geometry has on effective radius retrievals. This study examines the sensitivity of reflected solar radiation to cloud droplet size, using extensive 3-D radiative transfer calculations on the basis of realistic droplet size resolving cloud simulations. Furthermore, it explores a further technique to resolve ambiguities caused by illumination and cloud geometry by considering the surroundings of each pixel. Based on these findings, a statistical approach is used to provide an effective radius retrieval. This statistical effective radius retrieval is focused on the liquid part of convective water clouds, e.g., cumulus mediocris, cumulus congestus, and trade-wind cumulus, which exhibit well-developed cloud sides. Finally, the developed retrieval is tested using known and unknown cloud side scenes to analyze its performance.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Mohammed Taleb Obaidat ◽  
Nour Abu Shuaib

The aim of this study were to determine of best areas to construct new photovoltaic farms in Jordan using four main factors that majorly affect the feasibility of these farms which is solar radiation yearly sum on the land, aspect of the land, height of the land and the presence of electricity lines near the land. Further, to represent main current projects in Geographic Information Systems (GIS) software. The outcome results will produce a map of Jordan Suitability areas to construct new Photovoltaic farms by using GIS software and many calculations with remote sensing techniques and represent some of the current main photovoltaic projectson it as a spatial data with their names and their capacities. The new methodology will open the door for numerous GIS applications in the area of Solar Energy. 


2018 ◽  
Vol 176 ◽  
pp. 08005 ◽  
Author(s):  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Anton Lopatin ◽  
Eleni Marinou ◽  
Eleni Giannakaki ◽  
...  

Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.


2019 ◽  
Vol 11 (6) ◽  
pp. 676 ◽  
Author(s):  
Theodora Angelopoulou ◽  
Nikolaos Tziolas ◽  
Athanasios Balafoutis ◽  
George Zalidis ◽  
Dionysis Bochtis

Towards the need for sustainable development, remote sensing (RS) techniques in the Visible-Near Infrared–Shortwave Infrared (VNIR–SWIR, 400–2500 nm) region could assist in a more direct, cost-effective and rapid manner to estimate important indicators for soil monitoring purposes. Soil reflectance spectroscopy has been applied in various domains apart from laboratory conditions, e.g., sensors mounted on satellites, aircrafts and Unmanned Aerial Systems. The aim of this review is to illustrate the research made for soil organic carbon estimation, with the use of RS techniques, reporting the methodology and results of each study. It also aims to provide a comprehensive introduction in soil spectroscopy for those who are less conversant with the subject. In total, 28 journal articles were selected and further analysed. It was observed that prediction accuracy reduces from Unmanned Aerial Systems (UASs) to satellite platforms, though advances in machine learning techniques could further assist in the generation of better calibration models. There are some challenges concerning atmospheric, radiometric and geometric corrections, vegetation cover, soil moisture and roughness that still need to be addressed. The advantages and disadvantages of each approach are highlighted and future considerations are also discussed at the end.


Sign in / Sign up

Export Citation Format

Share Document