scholarly journals Total column CO<sub>2</sub> measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

2010 ◽  
Vol 3 (4) ◽  
pp. 947-958 ◽  
Author(s):  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
G. W. Bryant ◽  
P. O. Wennberg ◽  
G. C. Toon ◽  
...  

Abstract. An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.

2010 ◽  
Vol 3 (2) ◽  
pp. 989-1021 ◽  
Author(s):  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
G. W. Bryant ◽  
P. O. Wennberg ◽  
G. C. Toon ◽  
...  

Abstract. An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.


2020 ◽  
Author(s):  
Johannes Lampel ◽  
Ka Lok Chan ◽  
Denis Pöhler ◽  
Matthias Wiegner ◽  
Carlos Alberti ◽  
...  

&lt;p&gt;We present the Airyx 2D SkySpec Instrument: A commercially available two-dimensionally scanning Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) setup for the observations of trace gases using spectral measurements of scattered sun light and optionally also direct sun light. The waterproof design of the scanner unit is designed for long-term outdoor deployment. Temperature stabilisation of the spectrometers and automatic calibration spectra measurement are used to ensure high-quality measurement data over months and years of observations.&lt;/p&gt;&lt;p&gt;We show 2.5 years of measurements in Munich. Vertical columns and vertical distribution profiles of aerosol extinction coefficient, NO&lt;sub&gt;2&lt;/sub&gt; and HCHO are retrieved from the 2D MAX-DOAS observations. The measured surface aerosol extinction coefficients and NO&lt;sub&gt;2&lt;/sub&gt; mixing ratios are compared to in-situ monitor data. The retrieved surface NO&lt;sub&gt;2&lt;/sub&gt; mixing ratios show good agreement with in-situ monitor data with a Pearson correlation coefficient (R) of 0.91. Good agreement (R= 0.80) is also found for AOD when compared to sun-photometer measurements. Tropospheric vertical column densities (VCDs) of NO2 and HCHO derived from the MAX-DOAS measurements are also used to validate OMI and TROPOMI satellite observations. Monthly averaged data show good correlation, however, satellite observations are on average 30% lower than the MAX-DOAS measurements. Furthermore, the 2D MAX-DOAS observations are used to investigate the spatio-temporal characteristic of NO2 and HCHO in Munich. Analysis of the relations among aerosol, NO&lt;sub&gt;2&lt;/sub&gt; and HCHO show higher aerosol to HCHO ratios in winter indicating a longer atmospheric lifetime of aerosol and HCHO. The analysis also suggests that secondary aerosol formation is the major source of aerosols in Munich.&lt;/p&gt;


2019 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Mahesh Kumar Sha ◽  
Nicolas Kumps ◽  
Christian Hermans ◽  
...  

Abstract. TCCON (Total Carbon Column Observing Network) column-averaged dry air mole fraction of CH4 (XCH4) measurements have been widely used to validate satellite observations and to estimate model simulations. The GGG2014 code is the standard TCCON retrieval software performing a profile scaling retrieval. In order to obtain several vertical information in addition to total column, in this study, the SFIT4 retrieval code is applied to retrieve CH4 mole fraction vertical profile using TCCON spectra (SFIT4TCCON) at six sites (Ny-Ålesund, Sodankylä, Bialystok, Bremen, Orléans and St Denis) during the time period of 2016−2017. The retrieval strategy of SFIT4TCCON is investigated. The degree of freedom for signal of the SFIT4TCCON retrieval is about 2.4, with two distinct species of information in the troposphere and in the stratosphere. The averaging kernel and error budget of the SFIT4TCCON retrieval are presented. The data accuracy and precision of the SFIT4TCCON retrievals, including the total column and two partial columns (in the troposphere and stratosphere), are estimated by TCCON standard retrievals, ground-based in situ measurements, ACE-FTS satellite observations, TCCON proxy data and AirCore measurements. By comparison against TCCON standard retrievals, it is found that the retrieval uncertainty of SFIT4TCCON XCH4 is similar to that of TCCON standard retrievals with the systematic uncertainty within 0.35 % and the random uncertainty about 0.5 %. The tropospheric and stratospheric XCH4 from SFIT4TCCON retrievals are assessed by comparing with AirCore measurements at Sodankylä, and there is a 1.2 % overestimation in the SFIT4TCCON tropospheric XCH4 and a 4.0 % underestimation in the SFIT4TCCON stratospheric XCH4, which are within the systematic uncertainties of SFIT4TCCON retrieved partial columns in the troposphere and stratosphere, respectively.


2020 ◽  
Author(s):  
Christian Borger ◽  
Steffen Beirle ◽  
Steffen Dörner ◽  
Holger Sihler ◽  
Thomas Wagner

Abstract. Total column water vapour has been retrieved from TROPOMI measurements in the visible blue spectral range and compared to a variety of different reference data sets for clear-sky conditions during boreal summer and winter. The retrieval consists of the common two-step DOAS approach: first the spectral analysis is performed within a linearized scheme and then the retrieved slant column densities are converted to vertical columns using an iterative scheme for the water vapour a priori profile shape which is based on an empirical parameterization of the water vapour scale height. Moreover, a modified albedo map was used combining the OMI LER albedo and scaled MODIS albedo map. The use of the alternative albedo is especially important over regions with very low albedo and high probability of clouds like the Amazon region. The errors of the TCWV retrieval have been theoretically estimated considering the contribution of a variety of different uncertainty sources. For observations during clear-sky conditions, over ocean surface, and at low solar zenith angles the error typically is around values of 10–20 % and during cloudy-sky conditions, over land surface, and at high solar zenith angles it reaches values around 20–50 %. In the framework of a validation study the retrieval demonstrates that it can well capture the global water vapour distribution: the retrieved H2O VCDs show very good agreement to the reference data sets over ocean for boreal summer and winter whereby the modified albedo map substantially improves the retrieval's consistency to the reference data sets in particular over tropical landmasses. However over land the retrieval underestimates the VCD by about 10 %, particularly during summertime. Our investigations show that this underestimation is likely caused by uncertainties within the surface albedo and the cloud input data: Low level clouds cause an underestimation but for mid to high level clouds good agreement is found. In addition, our investigations indicate that these biases can probably be further reduced by the use of updated cloud input data. The TCWV retrieval can be easily applied to further satellite sensors (e.g. GOME-2 or OMI) for creating uniform measurement data sets on longterm which is particularly interesting for climate and trend studies of water vapour.


2005 ◽  
Vol 5 (1) ◽  
pp. 875-909
Author(s):  
B. Vogel ◽  
R. Müller ◽  
A. Engel ◽  
J.-U. Grooß ◽  
D. Toohey ◽  
...  

Abstract. Chlorine monoxide (ClO) plays a key role in stratospheric ozone loss processes at midlatitudes. We present two balloonborne in situ measurements of ClO conducted in northern hemisphere midlatitudes during the period of the maximum of total inorganic chlorine loading in the atmosphere. Both ClO measurements were conducted on board the TRIPLE balloon payload, launched in November 1996 in León, Spain, and in May 1999 in Aire sur l'Adour, France. For both flights a ClO daylight and night time vertical profile could be derived over an altitude range of approximately 15–31 km. ClO mixing ratios are compared to model simulations performed with the photochemical box model version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). Simulations along 24-h backward trajectories were performed to study the diurnal variation of ClO in the midlatitude lower stratosphere. Model simulations for the flight launched in Aire sur l'Adour 1999 show a good agreement with the ClO measurements. For the flight launched in León 1996, a similar good agreement is found, except at around ≈650 K potential temperature (≈26 km altitude). However, a tendency is found that for solar zenith angles greater than 86°–87° the simulated ClO mixing ratios substantially overestimate measured ClO by approximately a factor of 2.5 or more for both flights. Therefore we conclude that no indication can be deduced from the presented ClO measurements that substantial uncertainties exist in midlatitude chlorine chemistry of the stratosphere. An exception is the situation at solar zenith angles greater than 86°–87° where model simulations substantial overestimate ClO observations.


2010 ◽  
Vol 3 (6) ◽  
pp. 5613-5643 ◽  
Author(s):  
I. Morino ◽  
O. Uchino ◽  
M. Inoue ◽  
Y. Yoshida ◽  
T. Yokota ◽  
...  

Abstract. Column-averaged volume mixing ratios of carbon dioxide and methane retrieved from the Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed observation (GOSAT SWIR XCO2 and XCH4) were compared with the reference data obtained by ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs) participating in the Total Carbon Column Observing Network (TCCON). Through calibrations of g-b FTSs with airborne in-situ measurements, the uncertainty of XCO2 and XCH4 associated with the g-b FTS was determined to be 0.8 ppm (~0.2%) and 4 ppb (~0.2%), respectively. The GOSAT products are validated with these calibrated g-b FTS data. Preliminary results are as follows: The GOSAT SWIR XCO2 and XCH4 (Version 01.xx) are biased low by 8.85 ± 4.75 ppm (2.3 ± 1.2%) and 20.4 ± 18.9 ppb (1.2 ± 1.1%), respectively. The precision of the GOSAT SWIR XCO2 and XCH4 is considered to be about 1%. The latitudinal distributions of zonal means of the GOSAT SWIR XCO2 and XCH4 show similar features to those of the g-b FTS data.


Author(s):  
Debra Wunch ◽  
Geoffrey C. Toon ◽  
Jean-François L. Blavier ◽  
Rebecca A. Washenfelder ◽  
Justus Notholt ◽  
...  

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO 2 , CO, CH 4 , N 2 O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO 2 ). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.


2020 ◽  
Author(s):  
Rigel Kivi ◽  
Huilin Chen ◽  
Juha Hatakka ◽  
Pauli Heikkinen ◽  
Tuomas Laurila ◽  
...  

&lt;p&gt;Carbon dioxide and methane column measurement at the Finnish Meteorological Institute&amp;#8217;s Sodankyl&amp;#228; facility in northern Finland started in early 2009. The measurements have been taken by a Fourier Transform Spectrometer (FTS) in the near-infrared spectral region. From the spectra column-averaged abundances of CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt; and other gases are derived. The instrument participates in the Total Carbon Column Observing Network (TCCON).&amp;#160; Here we present long-term ground based FTS measurements of carbon dioxide and methane and comparisons with satellite borne observations. We find that CO&lt;sub&gt;2&lt;/sub&gt; column amounts have increased by 2.2 &amp;#177; 0.1 ppm/year since the start of the measurements in 2009 and CH&lt;sub&gt;4&lt;/sub&gt; column amounts have increased by 7 &amp;#177; 0.4 ppb/year. The measurements are in good agreement with multi-year measurements by the Greenhouse Gases Observing Satellite (GOSAT): the relative difference in XCH&lt;sub&gt;4&lt;/sub&gt; has been -0.07 &amp;#177; 0.02 % and the relative difference in XCO&lt;sub&gt;2&lt;/sub&gt; has been 0.04 &amp;#177; 0.02 %. Finally we use balloon borne AirCore observations at the Sodankyl&amp;#228; site to provide comparisons between FTS and in situ observations during all seasons.&lt;/p&gt;


2014 ◽  
Vol 14 (13) ◽  
pp. 6621-6642 ◽  
Author(s):  
K.-P. Heue ◽  
H. Riede ◽  
D. Walter ◽  
C. A. M. Brenninkmeijer ◽  
T. Wagner ◽  
...  

Abstract. The chemistry in large thunderstorm clouds is influenced by local lightning-NOx production and uplift of boundary layer air. Under these circumstances trace gases like nitrous acid (HONO) or formaldehyde (HCHO) are expected to be formed or to reach the tropopause region. However, up to now only few observations of HONO at this altitude have been reported. Here we report on a case study where enhancements in HONO, HCHO and nitrogen oxides (NOx) were observed by the CARIBIC flying laboratory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The event took place in a convective system over the Caribbean Sea in August 2011. Inside the cloud the light path reaches up to 100 km. Therefore the DOAS instrument on CARIBIC was very sensitive to the tracers inside the cloud. Based on the enhanced slant column densities of HONO, HCHO and NO2, average mixing ratios of 37, 468 and 210 ppt, respectively, were calculated. These data represent averages for constant mixing ratios inside the cloud. However, a large dependency on the assumed profile is found; for HONO a mixing ratio of 160 ppt is retrieved if the total amount is assumed to be situated in the uppermost 2 km of the cloud. The NO in situ instrument measured peaks up to 5 ppb NO inside the cloud; the background in the cloud was about 1.3 ppb, and hence clearly above the average outside the cloud (≈ 150 ppt). The high variability and the fact that the enhancements were observed over a pristine marine area led to the conclusion that, in all likelihood, the high NO concentrations were caused by lighting. This assumption is supported by the number of flashes that the World Wide Lightning Location Network (WWLLN) counted in this area before and during the overpass. The chemical box model CAABA is used to estimate the NO and HCHO source strengths which are necessary to explain our measurements. For NO a source strength of 10 × 109 molec cm−2 s−1 km−1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network, and lightning emissions of 5 × 1025 NO molec flash−1 (2.3–6.4 × 1025). The uncertainties are determined by a change of the input parameters in the box model, the cloud top height and the flash density. The emission rate per flash is scaled up to a global scale and 1.9 (1.4–2.5) tg N a−1 is estimated. The HCHO updraught is of the order of 120 × 109 molec cm−2 s−1 km−1. Also isoprene and CH3OOH as possible HCHO sources are discussed.


2012 ◽  
Vol 12 (3) ◽  
pp. 1255-1285 ◽  
Author(s):  
S. Choi ◽  
Y. Wang ◽  
R. J. Salawitch ◽  
T. Canty ◽  
J. Joiner ◽  
...  

Abstract. We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.


Sign in / Sign up

Export Citation Format

Share Document