scholarly journals Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry

2010 ◽  
Vol 3 (6) ◽  
pp. 5671-5703
Author(s):  
F. Meier ◽  
D. Scherer ◽  
J. Richters ◽  
A. Christen

Abstract. This research quantifies and discusses atmospheric effects that alter the radiance observed by a ground-based thermal-infrared (TIR) camera mounted on top of a high-rise building in the city of Berlin, Germany. The study shows that atmospheric correction of ground-based TIR imagery of the three-dimensional (3-D) urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS) geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRAN 5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV) of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (8 August 2009) and is particularly notable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 7.7 K at 12:00. Atmospheric effects are biased up to 4.3 K at 12:00 and up to 0.6 K at 24:00, if non-spatially distributed LOS parameters are used.

2011 ◽  
Vol 4 (5) ◽  
pp. 909-922 ◽  
Author(s):  
F. Meier ◽  
D. Scherer ◽  
J. Richters ◽  
A. Christen

Abstract. This research quantifies and discusses atmospheric effects, which alter the radiance observed by a ground-based thermal-infrared (TIR) camera. The TIR camera is mounted on a boom at a height of 125 m above ground on top of a high-rise building in the city of Berlin, Germany (52.4556° N, 13.3200° E) and observes the Earth's surface. The study shows that atmospheric correction of TIR imagery of the three-dimensional (3-D) urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS) geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRANTM5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV) of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (6 August 2009) and is particularly noticeable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 6.7 K at 12:00. The use of non-spatially distributed LOS parameters leads to errors of up to 3.7 K at 12:00 and up to 0.5 K at 24:00.


2020 ◽  
Vol 12 (1) ◽  
pp. 184 ◽  
Author(s):  
Malvina Silvestri ◽  
Vito Romaniello ◽  
Simon Hook ◽  
Massimo Musacchio ◽  
Sergio Teggi ◽  
...  

The ECO System Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a new space mission developed by NASA-JPL which launched on July 2018. It includes a multispectral thermal infrared radiometer that measures the radiances in five spectral channels between 8 and 12 μm. The primary goal of the mission is to study how plants use water by measuring their temperature from the vantage point of the International Space Station. However, as ECOSTRESS retrieves the surface temperature, the data can be used to measure other heat-related phenomena, such as heat waves, volcanic eruptions, and fires. We have cross-compared the temperatures obtained by ECOSTRESS, the Advanced Spaceborne Thermal Emission and Reflectance radiometer (ASTER) and the Landsat 8 Thermal InfraRed Sensor (TIRS) in areas where thermal anomalies are present. The use of ECOSTRESS for temperature analysis as well as ASTER and Landsat 8 offers the possibility of expanding the availability of satellite thermal data with very high spatial and temporal resolutions. The Temperature and Emissivity Separation (TES) algorithm was used to retrieve surface temperatures from the ECOSTRESS and ASTER data, while the single-channel algorithm was used to retrieve surface temperatures from the Landsat 8 data. Atmospheric effects in the data were removed using the moderate resolution atmospheric transmission (MODTRAN) radiative transfer model driven with vertical atmospheric profiles collected by the University of Wyoming. The test sites used in this study are the active Italian volcanoes and the Parco delle Biancane geothermal area (Italy). In order to test and quantify the difference between the temperatures retrieved by the three spaceborne sensors, a set of coincident imagery was acquired and used for cross comparison. Preliminary statistical analyses show a very good agreement in terms of correlation and mean values among sensors over the test areas.


Author(s):  
M. R. Pandya ◽  
V. N. Pathak ◽  
D. B. Shah ◽  
R.. P Singh

The Indian Remote Sensing (IRS) satellite series has been providing data since 1988 through various Earth observation missions. Before using IRS data for the quantitative analysis and parameter retrieval, it must be corrected for the atmospheric effects because spectral bands of IRS sensors are contaminated by intervening atmosphere. Standard atmospheric correction model tuned for the IRS sensors was not available for deriving surface reflectance. Looking at this gap area, a study was carried out to develop a physicsbased method, called SACRS2- a Scheme for Atmospheric Correction of Resourcesat-2 (RS2) AWiFS data. SACRS2 is a computationally fast scheme developed for correcting large amount of data acquired by RS2-AWiFS sensor using a detailed radiative transfer model 6SV. The method is based on deriving a set of coefficients which depend on spectral bands of the RS2-AWiFS sensor through thousands of forward signal simulations by 6SV. Once precise coefficients of all the physical processes of atmospheric correction are determined for RS2-AWiFS spectral bands then a complete scheme was developed using these coefficients. Major inputs of the SACRS2 scheme are raw digital numbers recorded by RS2-AWiFS sensor, aerosol optical thickness at 550 nm, columnar water vapour content, ozone content and viewing-geometry. Results showed a good performance of SACRS2 with a maximum relative error in the SACRS2 simulations ranged between approximately 2 to 7 percent with respect to reference 6SV computations. A complete software package containing the SACRS2 model along with user guide and test dataset has been released on the website (www.mosdac.gov.in) for the researchers.


2021 ◽  
Vol 13 (2) ◽  
pp. 270
Author(s):  
Adrian Doicu ◽  
Dmitry S. Efremenko ◽  
Thomas Trautmann

An algorithm for the retrieval of total column amount of trace gases in a multi-dimensional atmosphere is designed. The algorithm uses (i) certain differential radiance models with internal and external closures as inversion models, (ii) the iteratively regularized Gauss–Newton method as a regularization tool, and (iii) the spherical harmonics discrete ordinate method (SHDOM) as linearized radiative transfer model. For efficiency reasons, SHDOM is equipped with a spectral acceleration approach that combines the correlated k-distribution method with the principal component analysis. The algorithm is used to retrieve the total column amount of nitrogen for two- and three-dimensional cloudy scenes. Although for three-dimensional geometries, the computational time is high, the main concepts of the algorithm are correct and the retrieval results are accurate.


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2021 ◽  
Vol 13 (4) ◽  
pp. 781
Author(s):  
Cristiana Bassani ◽  
Sindy Sterckx

For water quality monitoring using satellite data, it is often required to optimize the low radiance signal through the application of radiometric gains. This work describes a procedure for the retrieval of radiometric gains to be applied to OLI/L8 and MSI/S2A data over coastal waters. The gains are defined by the ratio of the top of atmosphere (TOA) reflectance simulated using the Second Simulation of a Satellite Signal in the Solar Spectrum—vector (6SV) radiative transfer model, REF, and the TOA reflectance acquired by the sensor, MEAS, over AERONET-OC stations. The REF is simulated considering quasi-synchronous atmospheric and aquatic AERONET-OC products and the image acquisition geometry. Both for OLI/L8 and MSI/S2A the measured TOA reflectance was higher than the modeled signal in almost all bands resulting in radiometric gains less than 1. The use of retrieved gains showed an improvement of reflectance remote sensing, Rrs, when with ACOLITE atmospheric correction software. When the gains are applied an accuracy improvement of the Rrs in the 400–700 nm domain was observed except for the first blue band of both sensors. Furthermore, the developed procedure is quick, user-friendly, and easily transferable to other optical sensors.


2016 ◽  
Vol 9 (8) ◽  
pp. 2741-2754 ◽  
Author(s):  
Elham Baranizadeh ◽  
Benjamin N. Murphy ◽  
Jan Julin ◽  
Saeed Falahat ◽  
Carly L. Reddington ◽  
...  

Abstract. The particle formation scheme within PMCAMx-UF, a three-dimensional chemical transport model, was updated with particle formation rates for the ternary H2SO4–NH3–H2O pathway simulated by the Atmospheric Cluster Dynamics Code (ACDC) using quantum chemical input data. The model was applied over Europe for May 2008, during which the EUCAARI-LONGREX (European Aerosol Cloud Climate and Air Quality Interactions–Long-Range Experiment) campaign was carried out, providing aircraft vertical profiles of aerosol number concentrations. The updated model reproduces the observed number concentrations of particles larger than 4 nm within 1 order of magnitude throughout the atmospheric column. This agreement is encouraging considering the fact that no semi-empirical fitting was needed to obtain realistic particle formation rates. The cloud adjustment scheme for modifying the photolysis rate profiles within PMCAMx-UF was also updated with the TUV (Tropospheric Ultraviolet and Visible) radiative-transfer model. Results show that, although the effect of the new cloud adjustment scheme on total number concentrations is small, enhanced new-particle formation is predicted near cloudy regions. This is due to the enhanced radiation above and in the vicinity of the clouds, which in turn leads to higher production of sulfuric acid. The sensitivity of the results to including emissions from natural sources is also discussed.


2020 ◽  
Vol 28 (18) ◽  
pp. 25730
Author(s):  
Wenwen Li ◽  
Feng Zhang ◽  
Yi-Ning Shi ◽  
Hironobu Iwabuchi ◽  
Mingwei Zhu ◽  
...  

2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


Sign in / Sign up

Export Citation Format

Share Document