scholarly journals Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year

2007 ◽  
Vol 25 (2) ◽  
pp. 495-506 ◽  
Author(s):  
I. Finch ◽  
M. Lockwood

Abstract. There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, Pα, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.

Author(s):  
S. R. Singh ◽  
H. J. Fan ◽  
L. D. Marks

Since the original observation that the surfaces of materials undergo radiation damage in the electron microscope similar to that observed by more conventional surface science techniques there has been substantial interest in understanding these phenomena in more detail; for a review see. For instance, surface damage in a microscope mimics damage in the space environment due to the solar wind and electron beam lithographic operations.However, purely qualitative experiments that have been done in the past are inadequate. In addition, many experiments performed in conventional microscopes may be inaccurate. What is needed is careful quantitative analysis including comparisons of the behavior in UHV versus that in a conventional microscope. In this paper we will present results of quantitative analysis which clearly demonstrate that the phenomena of importance are diffusion controlled; more detailed presentations of the data have been published elsewhere.As an illustration of the results, Figure 1 shows a plot of the shrinkage of a single, roughly spherical particle of WO3 versus time (dose) driven by oxygen desorption from the surface.


1996 ◽  
Vol 14 (8) ◽  
pp. 777-785 ◽  
Author(s):  
V. Carbone ◽  
R. Bruno

Abstract. Some signed measures in turbulence are found to be sign-singular, that is their sign reverses continuously on arbitrary finer scales with a reduction of the cancellation between positive and negative contributions. The strength of the singularity is characterized by a scaling exponent κ, the cancellation exponent. In the present study by using some turbulent samples of the velocity field obtained from spacecraft measurements in the interplanetary medium, we show that sign-singularity is present everywhere in low-frequency turbulent samples. The cancellation exponent can be related to the characteristic scaling laws of turbulence. Differences in the values of κ, calculated in both high- and low-speed streams, allow us to outline some physical differences in the samples with different velocities.


2016 ◽  
Vol 12 (S327) ◽  
pp. 67-70
Author(s):  
J. Palacios ◽  
C. Cid ◽  
E. Saiz ◽  
A. Guerrero

AbstractWe have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.


2021 ◽  
Author(s):  
Rocio Manobanda ◽  
Christian Vasconez ◽  
Denise Perrone ◽  
Raffaele Marino ◽  
Dimitri Laveder ◽  
...  

<p>Structured, highly variable and virtually collision-free. Space plasma is an unique laboratory for studying the transfer of energy in a highly turbulent environment. This turbulent medium plays an important role in various aspects of the Solar--Wind generation, particles acceleration and heating, and even in the propagation of cosmic rays. Moreover, the Solar Wind continuous expansion develops a strong turbulent character, which evolves towards a state that resembles the well-known hydrodynamic turbulence (Bruno and Carbone). This turbulence is then dissipated from magnetohydrodynamic (MHD) through kinetic scales by different -not yet well understood- mechanisms. In the MHD approach, Kolmogorov-like behaviour is supported by power-law spectra and intermittency measured in observations of magnetic and velocity fluctuations. In this regime, the intermittent cross-scale energy transfer has been extensively described by the Politano--Pouquet (global) law, which is based on conservation laws of the MHD invariants, and was recently expanded to take into account the physics at the bottom of the inertial (or Hall) range, e.g. (Ferrand et al., 2019). Following the 'Turbulence Dissipation Challenge', we study the properties of the turbulent energy transfer using three different bi-dimensional numerical models of space plasma. The models, Hall-MHD (HMHD), Landau Fluid (LF) and Hybrid Vlasov-Maxwell (HVM), were ran in collisionless-plasma conditions, with an out-of-plane ambient magnetic field, and with magnetic diffusivity carefully calibrated in the fluid models. As each model has its own range of validity, it allows us to explore a long-enough range of scales at a period of maximal turbulence activity. Here, we estimate the local and global scaling properties of different energy channels using a, recently introduced, proxy of the local turbulent energy transfer (LET) rate (Sorriso-Valvo et al., 2018). This study provides information on the structure of the energy fluxes that transfers (and dissipates) most of the energy at small scales throughout the turbulent cascade. </p>


2020 ◽  
Vol 246 (2) ◽  
pp. 48 ◽  
Author(s):  
Riddhi Bandyopadhyay ◽  
M. L. Goldstein ◽  
B. A. Maruca ◽  
W. H. Matthaeus ◽  
T. N. Parashar ◽  
...  

2020 ◽  
Author(s):  
Quentin Nénon ◽  
Andrew R Poppe ◽  
Ali Rahmati ◽  
James P McFadden

<p>Mars has lost and is losing its atmosphere into space. Strong evidences of this come from the observation of planetary singly charged heavy ions (atomic oxygen, molecular oxygen, carbon dioxide ions) by Mars Express and MAVEN. Phobos, the closest moon of Mars, orbits only 6,000 kilometers above the red planet’s surface and is therefore a unique vantage point of the planetary atmospheric escape, with the escaping ions being implanted within the regolith of Phobos and altering the properties of the moon’s surface.</p> <p>In this presentation, we aggregate all ion observations gathered in-situ close to the orbit of Phobos by three ion instruments onboard MAVEN, from 2015 to 2019, to constrain the long-term averaged ion environment seen by the Martian moon at all longitudes along its orbit. In particular, the SupraThermal and Thermal Ion Composition (STATIC) instrument onboard MAVEN distinguishes between solar wind and planetary ions. The newly constrained long-term ion environment seen by Phobos is combined with numerical simulations of ion transport and effects in matter.</p> <p>This way, we find that planetary ions are implanted on the near side of Phobos (pointing towards Mars) inside the uppermost tens of nanometers of regolith grains. The composition of near-side grains that may be sampled by future Phobos sample return missions is therefore not only contaminated by planetary ions, as seen in lunar samples with the terrestrial atmosphere, but may show a unique record of the past atmosphere of Mars.</p> <p>The long-term fluxes of planetary ions precipitating onto Phobos are so intense that these ions weather the moon’s surface as much as or more than solar wind ions. In particular, Martian ions accelerate the long-term sputtering and amorphization of the near side regolith by a factor of 2. Another implication is that ion weathering is highly asymmetric between the near side and far side of Phobos.</p>


2012 ◽  
Vol 8 (S294) ◽  
pp. 487-488
Author(s):  
Li-Jia Liu ◽  
Bo Peng

AbstractThe Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.


Sign in / Sign up

Export Citation Format

Share Document