scholarly journals ULF wave effects on high frequency signal propagation through the ionosphere

2009 ◽  
Vol 27 (7) ◽  
pp. 2779-2788 ◽  
Author(s):  
C. L. Waters ◽  
S. P. Cox

Abstract. Variations in the total electron content (TEC) of the ionosphere alter the propagation characteristics of EM radiation for frequencies above a few megahertz (MHz). Spatial and temporal variations of the ionosphere TEC influence highly sensitive, ground based spatial measurements such as those used in radio astronomy and Global Positioning System (GPS) applications. In this paper we estimate the magnitudes of the changes in TEC and the time delays of high frequency signals introduced by variations in the ionosphere electron density caused by the natural spectrum of ultra-low frequency (ULF) wave activity that originates in near-Earth space. The time delays and associated phase shifts depend on the frequency, spatial structure and amplitude of the ULF waves.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


2020 ◽  
Vol 12 (11) ◽  
pp. 1822
Author(s):  
Eren Erdogan ◽  
Michael Schmidt ◽  
Andreas Goss ◽  
Barbara Görres ◽  
Florian Seitz

The Kalman filter (KF) is widely applied in (ultra) rapid and (near) real-time ionosphere modeling to meet the demand on ionosphere products required in many applications extending from navigation and positioning to monitoring space weather events and naturals disasters. The requirement of a prior definition of the stochastic models attached to the measurements and the dynamic models of the KF is a drawback associated with its standard implementation since model uncertainties can exhibit temporal variations or the time span of a given test data set would not be large enough. Adaptive methods can mitigate these problems by tuning the stochastic model parameters during the filter run-time. Accordingly, one of the primary objectives of our study is to apply an adaptive KF based on variance component estimation to compute the global Vertical Total Electron Content (VTEC) of the ionosphere by assimilating different ionospheric GNSS measurements. Secondly, the derived VTEC representation is based on a series expansion in terms of compactly supported B-spline functions. We highlight the morphological similarity of the spatial distributions and the magnitudes between VTEC values and the corresponding estimated B-spline coefficients. This similarity allows for deducing physical interpretations from the coefficients. In this context, an empirical adaptive model to account for the dynamic model uncertainties, representing the temporal variations of VTEC errors, is developed in this work according to the structure of B-spline coefficients. For the validation, the differential slant total electron content (dSTEC) analysis and a comparison with Jason-2/3 altimetry data are performed. Assessments show that the quality of the VTEC products derived by the presented algorithm is in good agreement, or even more accurate, with the products provided by IGS ionosphere analysis centers within the selected periods in 2015 and 2017. Furthermore, we show that the presented approach can be applied to different ionosphere conditions ranging from very high to low solar activity without concerning time-variable model uncertainties, including measurement error and process noise of the KF because the associated covariance matrices are computed in a self-adaptive manner during run-time.


2001 ◽  
Vol 1 (1/2) ◽  
pp. 53-59 ◽  
Author(s):  
Sh. Naaman ◽  
L. S. Alperovich ◽  
Sh. Wdowinski ◽  
M. Hayakawa ◽  
E. Calais

Abstract. In this paper, perturbations of the ionospheric Total Electron Content (TEC) are compared with geomagnetic oscillations. Comparison is made for a few selected periods, some during earthquakes in California and Japan and others at quiet periods in Israel and California. Anomalies in TEC were extracted using Global Positioning System (GPS) observations collected by GIL (GPS in Israel) and the California permanent GPS networks. Geomagnetic data were collected in some regions where geomagnetic observatories and the GPS network overlaps. Sensitivity of the GPS method and basic wave characteristics of the ionospheric TEC perturbations are discussed. We study temporal variations of ionospheric TEC structures with highest reasonable spatial resolution around 50 km. Our results show no detectable TEC disturbances caused by right-lateral strike-slip earthquakes with minor vertical displacement. However, geomagnetic observations obtained at two observatories located in the epicenter zone of a strong dip-slip earthquake (Kyuchu, M = 6.2, 26 March 1997) revealed geomagnetic disturbances occurred 6–7 h before the earthquake.


2014 ◽  
Vol 989-994 ◽  
pp. 3973-3976
Author(s):  
Yi Fan Ma ◽  
Shu Gui Liu

Image edge detection is easily affected by noise. Wavelet algorithm can divide the image into low frequency and high frequency. By the processing of high frequency signal and the reconstruction of wavelet coefficients, the purpose of removing noise can be achieved. In the environment of VC++6.0, an image de-noising algorithm based on the wavelet combined with the Canny edge detection is proposed, which obtains a good result. The above algorithms are implemented based on OpenCV, which is more efficient, providing the conditions for subsequent image analysis and recognition. Experiments are carried out and the results show that the proposed algorithm is available and has a good performance.


2019 ◽  
Vol 94 ◽  
pp. 05005 ◽  
Author(s):  
Mokhamad Nur Cahyadi ◽  
Almas Nandityo Rahadyan ◽  
Buldan Muslim

Ionosphere is part of the atmospheric layer located between 50 to 1000 km above the earth's surface which consists of electrons that can influence the propagation of electromagnetic waves in the form of additional time in signal propagation, this depends on Total Electron Content (TEC) in the ionosphere and frequency GPS signal. In high positioning precision with GPS, the effect of the ionosphere must be estimated so that ionospheric correction can be determined to eliminate the influence of the ionosphere on GPS observation. Determination of ionospheric correction can be done by calculating the TEC value using dual frequency GPS data from reference stations or models. In making the TEC model, a polynomial function is used for certain hours. The processing results show that the maximum TEC value occurs at noon at 2:00 p.m. WIB for February 13, 2018 with a value of 35,510 TECU and the minimum TEC value occurs in the morning at 05.00 WIB for February 7, 2018 with a value of 2,138 TECU. The TEC model spatially shows the red color in the area of Surabaya and its surroundings for the highest TEC values during the day around 13.00 WIB to 16.00 WIB.


2020 ◽  
Author(s):  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Anna Yasyukevich ◽  
Boris Shpynev ◽  
Denis Khabituev

<p>We study the correlation between wave activities in different layers of the atmosphere. The variability of the measured characteristic in the range of internal gravity wave periods is used as a proxy of wave activity. In the case of ground-based measurements, we consider temporal variations with periods less than ~ 6 hours; while in the case of satellite measurements we take into account spatial variations with periods less than ~ 1000 km. The wave activity is calculated as the standard deviation of variations in the indicated period range with averaging over one day. The aim of the study is to detect a correlation between day-to-day variations of wave activity in different layers of the atmosphere. Correlation coefficients are calculated for various intervals from one month to one year. Correlation analysis reveals the potential relationship between wave phenomena in the stratosphere, mesosphere and ionosphere. The study uses the following characteristics. The ionospheric characteristics are the peak electron density from the Irkutsk ionosonde (52.3 N, 104.3 E) and the total electron content from the Irkutsk GPS receiver. The characteristic of the mesosphere is the mesopause temperature from spectrometric measurements of the OH emission (834.0 nm, band (6-2)) near Irkutsk (51.8 N, 103.1 E, Tory). The stratospheric characteristic is the vertical gas velocity at 1 hPa from the ERA-Interim reanalysis (apps.ecmwf.int/datasets/data/).</p><p>This study was supported by the Grant of the Russian Science Foundation (Project N 18-17-00042). The observational results were obtained using the equipment of Center for Common Use «Angara» http: //ckp-rf.ru/ckp/3056/ within budgetary funding of Basic Research program II.12.</p>


2020 ◽  
Author(s):  
Giovanni Nico ◽  
Aleksandra Nina ◽  
Anita Ermini ◽  
Pierfrancesco Biagi

<p>In this work we use Very Low Frequency (VLF) radio signals, having a frequency in the bands 20-80 kHz, to study the VLF signal propagation in the atmosphere quite undisturbed conditions by selecting the signals recorded during night. As a good approximation, we can model the propagation of VLF radio signals as characterized by a ground-wave and a sky-wave propagation mode. The first one generates a radio signal that propagates in the channel ground-troposphere, while the second one generates a signal which propagates using the lower ionosphere as a reflector. The VLF receivers of the INFREP (European Network of Electromagnetic Radiation) network are used. These receivers have been installed since 2009 mainly in southern and central Europe and currently the INFREP network consists of 9 receivers. A 1-minute sampling interval is used to record the amplitude of VLF signals. Long time-series of VLF signals propagating during night are extracted from recorded signals to study possible seasonal effects due to temporal variations in the physical properties of troposphere. A graph theory approach is used to investigate the spatial correlation of the aforementioned effects at different receivers. A multivariate analysis is also applied to identify common temporal changes observed at VLF receivers.</p><p>This work was supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Italy, under the project OT4CLIMA. This research is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under the projects 176002 and III44002.</p>


Sign in / Sign up

Export Citation Format

Share Document