scholarly journals Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy

2017 ◽  
Vol 14 ◽  
pp. 271-278 ◽  
Author(s):  
Vincenzo Mazzarella ◽  
Ida Maiello ◽  
Vincenzo Capozzi ◽  
Giorgio Budillon ◽  
Rossella Ferretti

Abstract. This work aims to provide a comparison between three dimensional and four dimensional variational data assimilation methods (3D-Var and 4D-Var) for a heavy rainfall case in central Italy. To evaluate the impact of the assimilation of reflectivity and radial velocity acquired from Monte Midia Doppler radar into the Weather Research Forecasting (WRF) model, the quantitative precipitation forecast (QPF) is used.The two methods are compared for a heavy rainfall event that occurred in central Italy on 14 September 2012 during the first Special Observation Period (SOP1) of the HyMeX (HYdrological cycle in Mediterranean EXperiment) campaign. This event, characterized by a deep low pressure system over the Tyrrhenian Sea, produced flash floods over the Marche and Abruzzo regions, where rainfall maxima reached more than 150 mm 24 h−1.To identify the best QPF, nine experiments are performed using 3D-Var and 4D-Var data assimilation techniques. All simulations are compared in terms of rainfall forecast and precipitation measured by the gauges through three statistical indicators: probability of detection (POD), critical success index (CSI) and false alarm ratio (FAR). The assimilation of conventional observations with 4D-Var method improves the QPF compared to 3D-Var. In addition, the use of radar measurements in 4D-Var simulations enhances the performances of statistical scores for higher rainfall thresholds.

Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Stefano Dietrich

Abstract. This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature and graupel mixing ratio. The methodology is set-up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to twenty cases occurred in fall 2012, that were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of raingauges over Italy, which is the target of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better the convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of the convection by lightning data assimilation, improves the precipitation forecast at fine scales (meso-β). The application of the methodology to twenty cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the Bias. The Probability of Detection (POD) increases by 3–5 % for the 3 h forecast and by more than 5 % for daily precipitation, depending on the precipitation threshold considered. Score differences between simulations with or without data assimilation are significant at 95 % level for most scores and thresholds considered, showing the positive and statistically robust impact of the lightning data assimilation on the precipitation forecast.


2017 ◽  
Vol 14 ◽  
pp. 187-194 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Claudio Transerici ◽  
Stefano Dietrich

Abstract. This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (> 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day−1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1–2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.


2018 ◽  
Vol 10 (9) ◽  
pp. 1380 ◽  
Author(s):  
Yanhui Xie ◽  
Jiancheng Shi ◽  
Shuiyong Fan ◽  
Min Chen ◽  
Youjun Dou ◽  
...  

Herein, a case study on the impact of assimilating satellite radiance observation data into the rapid-refresh multi-scale analysis and prediction system (RMAPS) is presented. This case study targeted the 48 h period from 19–20 July 2016, which was characterized by the passage of a low pressure system that produced heavy rainfall over North China. Two experiments were performed and 24 h forecasts were produced every 3 h. The results indicated that the forecast prior to the satellite radiance data assimilation could not accurately predict heavy rainfall events over Beijing and the surrounding area. The assimilation of satellite radiance data from the advanced microwave sounding unit-A (AMSU-A) and microwave humidity sounding (MHS) improved the skills of the quantitative precipitation forecast to a certain extent. In comparison with the control experiment that only assimilated conventional observations, the experiment with the integrated satellite radiance data improved the rainfall forecast accuracy for 6 h accumulated precipitation after about 6 h, especially for rainfall amounts that were greater than 25 mm. The average rainfall score was improved by 14.2% for the 25 mm threshold and by 35.8% for 50 mm of rainfall. The results also indicated a positive impact of assimilating satellite radiances, which was primarily reflected by the improved performance of quantitative precipitation forecasting and higher spatial correlation in the forecast range of 6–12 h. Satellite radiance observations provided certain valuable information that was related to the temperature profile, which increased the scope of the prediction of heavy rainfall and led to an improvement in the rainfall scoring in the RMAPS. The inclusion of satellite radiance observations was found to have a small but beneficial impact on the prediction of heavy rainfall events as it relates to our case study conditions. These findings suggest that the assimilation of satellite radiance data in the RMAPS can provide an overall improvement in heavy rainfall forecasting.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Tuanjie Hou ◽  
Fanyou Kong ◽  
Xunlai Chen ◽  
Hengchi Lei

This study examines the impact of three-dimensional variational data assimilation (3DVAR) on the prediction of two heavy rainfall events over Southern China by using a real-time storm-scale forecasting system. Initialized from the European Centre for Medium-Range Weather Forecasts (ECMWF) high-resolution data, the forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) 3DVAR package. Observations from Doppler radars, surface Automatic Weather Station (AWS) network, and radiosondes are used in the experiments to evaluate the impact of data assimilation on short-term quantitative precipitation forecast (QPF) skill. Results suggest that extrasurface AWS data assimilation has slight but general positive impact on rainfall location forecasts. Surface AWS data also improve model results of near-surface variables. Radiosonde data assimilation improves the QPF skill by improving rainfall position accuracy and reducing rainfall overprediction. Compared with radar data, the overall impact of additional surface and radiosonde data is smaller and is reflected primarily in reducing rainfall overestimation. The assimilation of all radar, surface, and radiosonde data has a more positive impact on the forecast skill than the assimilation of either type of data only for the two rainfall events.


2017 ◽  
Vol 17 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Stefano Dietrich

Abstract. This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature, and graupel mixing ratio. The methodology is set up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to 20 cases that occurred in fall 2012, which were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of rain gauges over Italy, which is the target area of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of convection by lightning data assimilation improves the precipitation forecast at fine scales (meso-β). The application of the methodology to 20 cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the bias. The probability of detection (POD) increases by 3–5 % for the 3 h forecast and by more than 5 % for daily precipitation, depending on the precipitation threshold considered. Score differences between simulations with or without data assimilation are significant at 95 % level for most scores and thresholds considered, showing the positive and statistically robust impact of the lightning data assimilation on the precipitation forecast.


2013 ◽  
Vol 6 (4) ◽  
pp. 7315-7353
Author(s):  
I. Maiello ◽  
R. Ferretti ◽  
S. Gentile ◽  
M. Montopoli ◽  
E. Picciotti ◽  
...  

Abstract. This work is a first assessment of the role of Doppler Weather radar (DWR) data in a mesoscale model for the prediction of a heavy rainfall. The study analyzes the event occurred during 19–22 May 2008 in the urban area of Rome. The impact of the radar reflectivity and radial velocity acquired from Monte Midia Doppler radar, on the assimilation into the Weather Research Forecasting (WRF) model version 3.2, is discussed. The goal is to improve the WRF high resolution initial condition by assimilating DWR data and using ECMWF analyses as First Guess thus improving the forecast of surface rainfall. Several experiments are performed using different set of Initial Conditions (ECMWF analyses and warm start or cycling) and a different assimilation strategy (3 h-data assimilation cycle). In addition, 3DVAR (three-dimensional variational) sensitivity tests to outer loops are performed for each of the previous experiment to include the non-linearity in the observation operators. In order to identify the best ICs, statistical indicators such as forecast accuracy, frequency bias, false alarm rate and equitable threat score for the accumulated precipitation are used. The results show that the assimilation of DWR data has a positive impact on the prediction of the heavy rainfall of this event, both assimilating reflectivity and radial velocity, together with conventional observations. Finally, warm start results in more accurate experiments as well as the outer loops strategy.


2019 ◽  
Vol 11 (8) ◽  
pp. 973 ◽  
Author(s):  
Yuanbing Wang ◽  
Yaodeng Chen ◽  
Jinzhong Min

In this study, the China Hourly Merged Precipitation Analysis (CHMPA) data which combines the satellite-retrieved Climate Prediction Center Morphing (CMORPH) with the automatic weather station precipitation observations is firstly assimilated into the Weather Research and Forecasting (WRF) model using the Four-Dimensional Variational (4DVar) method. The analyses and subsequent forecasts of heavy rainfall during Meiyu season occurred in July 2013 over eastern China is evaluated. Besides, the sensitivity of rainfall forecast skill of assimilating the CHMPA data to the rainfall error, the rainfall thinning distance, and the rainfall accumulation time within assimilation window are investigated in this study. Then, the impact of 4DVar data assimilation with and without CHMPA rainfall data is evaluated to show how the assimilation of CHMPA impacts the precipitation simulations. It is found that assimilation of the CHMPA data helps to produce a better short-range precipitation forecast in this study. The rainfall fields after assimilation of CHMPA is closer to observations in terms of quantity and pattern. However, the leading time of improved forecast is limited to about 18 hours. It is also found that CHMPA data assimilation produces stronger realistic moisture divergence, precipitabale water field and the vertical wind field in the forecasting fields, which eventually contributes to the improved forecast of heavy rainfall. This study can provide references for the assimilation of CHMPA data into the WRF model using 4DVar, which is valuable for limited-area numerical weather prediction and hydrological applications.


2014 ◽  
Vol 53 (6) ◽  
pp. 1381-1398 ◽  
Author(s):  
Ji-Hyun Ha ◽  
Gyu-Ho Lim ◽  
Suk-Jin Choi

AbstractTo accommodate accurate analyses and forecasts of a heavy rainfall event over the Korean Peninsula, the authors assimilated the GPS radio occultation (RO) data by using the Weather Research and Forecasting Model (WRF) and its three-dimensional variational data assimilation system (3DVAR). The employed datasets are from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) and Challenging Minisatellite Payload (CHAMP) missions. The selected case was from late October 2006, which intensively hit the northeastern part of the Korean Peninsula with record-breaking rainfall. In this study, the local refractivity observation operator was used in assimilating GPS RO soundings. The results are more pronounced for the cycling assimilation of GPS RO data than for the one-time data assimilation. From all of the parameters investigated (temperature, geopotential height, specific humidity, and winds), the GPS RO soundings highly modified the moisture distribution in the lower troposphere and also changed the wind field via the model dynamics. For the heavy rainfall forecast, the quantitative accuracy of the precipitation forecast with the GPS RO data assimilation was in good agreement with observations in terms of the maximum rainfall amount and threat scores. The improved forecast in the experiment came from the exact positioning of the low pressure system and its consequent convergence near the rainfall area. When RO data and GPS precipitable water data were assimilated simultaneously, the moisture distribution changed horizontally and vertically such that it increased the amount of rainfall, and an accurate description of the convective system development was feasible.


2021 ◽  
Vol 21 (9) ◽  
pp. 2849-2865
Author(s):  
Vincenzo Mazzarella ◽  
Rossella Ferretti ◽  
Errico Picciotti ◽  
Frank Silvio Marzano

Abstract. Forecasting precipitation over the Mediterranean basin is still a challenge because of the complex orographic region that amplifies the need for local observation to correctly initialize the forecast. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study. The radar reflectivity measured by the Italian ground radar network is assimilated in the Weather Research and Forecasting (WRF) model to simulate an event that occurred on 3 May 2018 in central Italy. In order to evaluate the impact of data assimilation, several simulations are objectively compared by means of a fraction skill score (FSS), which is calculated for several threshold values, and a receiver operating characteristic (ROC) curve. The results suggest that both assimilation methods in the cycling mode improve the 1-, 3- and 6-hourly quantitative precipitation estimation. More specifically, the cycling 4D-Var with a warm start initialization shows the highest FSS values in the first hours of the simulation both with light and heavy precipitation. Finally, the ROC curve confirms the benefit of 4D-Var: the area under the curve is 0.91 compared to 0.88 for the control experiment without data assimilation.


2021 ◽  
Author(s):  
Vincenzo Mazzarella ◽  
Rossella Ferretti ◽  
Errico Picciotti ◽  
Frank S. Marzano

Abstract. The precipitation forecast over the Mediterranean basin is still a challenge because of the complex orographic region which amplifies the need for local observation to correctly initialize the forecast. In this context the data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of precipitation pattern. For the first time, the ability of a cycling 4D-Var to reproduce a severe weather event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study. The radar reflectivity measured by the Italian ground radar network is assimilated in the WRF model to simulate an event occurred on May 3, 2018 in central Italy. In order to evaluate the impact of data assimilation, several simulations are objectively compared by means of a Fraction Skill Score (FSS), which is calculated for several threshold values, and a Receiver Operating Characteristic (ROC) curve. The results suggest that both assimilation methods in cycling mode improve the 1, 3 and 6-hourly quantitative precipitation estimation. More specifically, the cycling 4D-Var with a warm start initialization shows the highest FSS values in the first hours of simulation both with light and heavy precipitation. Finally, the ROC curve confirms the benefit of 4D-Var: the area under the curve is 0.91 compared to the 0.88 of control experiment without data assimilation.


Sign in / Sign up

Export Citation Format

Share Document