scholarly journals Impact of Radiance Data Assimilation on the Prediction of Heavy Rainfall in RMAPS: A Case Study

2018 ◽  
Vol 10 (9) ◽  
pp. 1380 ◽  
Author(s):  
Yanhui Xie ◽  
Jiancheng Shi ◽  
Shuiyong Fan ◽  
Min Chen ◽  
Youjun Dou ◽  
...  

Herein, a case study on the impact of assimilating satellite radiance observation data into the rapid-refresh multi-scale analysis and prediction system (RMAPS) is presented. This case study targeted the 48 h period from 19–20 July 2016, which was characterized by the passage of a low pressure system that produced heavy rainfall over North China. Two experiments were performed and 24 h forecasts were produced every 3 h. The results indicated that the forecast prior to the satellite radiance data assimilation could not accurately predict heavy rainfall events over Beijing and the surrounding area. The assimilation of satellite radiance data from the advanced microwave sounding unit-A (AMSU-A) and microwave humidity sounding (MHS) improved the skills of the quantitative precipitation forecast to a certain extent. In comparison with the control experiment that only assimilated conventional observations, the experiment with the integrated satellite radiance data improved the rainfall forecast accuracy for 6 h accumulated precipitation after about 6 h, especially for rainfall amounts that were greater than 25 mm. The average rainfall score was improved by 14.2% for the 25 mm threshold and by 35.8% for 50 mm of rainfall. The results also indicated a positive impact of assimilating satellite radiances, which was primarily reflected by the improved performance of quantitative precipitation forecasting and higher spatial correlation in the forecast range of 6–12 h. Satellite radiance observations provided certain valuable information that was related to the temperature profile, which increased the scope of the prediction of heavy rainfall and led to an improvement in the rainfall scoring in the RMAPS. The inclusion of satellite radiance observations was found to have a small but beneficial impact on the prediction of heavy rainfall events as it relates to our case study conditions. These findings suggest that the assimilation of satellite radiance data in the RMAPS can provide an overall improvement in heavy rainfall forecasting.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Tuanjie Hou ◽  
Fanyou Kong ◽  
Xunlai Chen ◽  
Hengchi Lei

This study examines the impact of three-dimensional variational data assimilation (3DVAR) on the prediction of two heavy rainfall events over Southern China by using a real-time storm-scale forecasting system. Initialized from the European Centre for Medium-Range Weather Forecasts (ECMWF) high-resolution data, the forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) 3DVAR package. Observations from Doppler radars, surface Automatic Weather Station (AWS) network, and radiosondes are used in the experiments to evaluate the impact of data assimilation on short-term quantitative precipitation forecast (QPF) skill. Results suggest that extrasurface AWS data assimilation has slight but general positive impact on rainfall location forecasts. Surface AWS data also improve model results of near-surface variables. Radiosonde data assimilation improves the QPF skill by improving rainfall position accuracy and reducing rainfall overprediction. Compared with radar data, the overall impact of additional surface and radiosonde data is smaller and is reflected primarily in reducing rainfall overestimation. The assimilation of all radar, surface, and radiosonde data has a more positive impact on the forecast skill than the assimilation of either type of data only for the two rainfall events.


2021 ◽  
Author(s):  
Michael Angus ◽  
Martin Widmann ◽  
Andrew Orr ◽  
Gregor Leckebusch

<p>Accurate predictions of heavy precipitation in India are vital for impact-orientated forecasting, and an essential requirement for mitigating the impact of damaging flood events. Operational forecasts from non-convection-permitting models can have large biases in the intensities and spatial structure of heavy precipitation, and while convection-permitting models can reduce biases, their operational use over large areas is not yet feasible. Statistical postprocessing can reduce these biases for relatively little computational cost, but few studies have focused on postprocessing monsoonal rainfall and the associated severe flooding events. As part of the Weather and Climate Science for Service Partnership India (WCSSP India), the HEavy Precipitation Forecast Postprocessing over India (HEPPI) project assesses the value of multiple postprocessing methods in this context. </p><p>Here, we present an evaluation of two postprocessing approaches to determine their suitability for heavy rainfall in India: Univariate Quantile Mapping (UQM) and Ensemble Model Output Statistics (EMOS). For each method, we apply the statistical postprocessing to daily precipitation in the NCMWF 12km forecast for the 2018 and 2019 monsoon seasons individually at each grid cell within the forecast. UQM leads by construction to rainfall distributions close to the observed ones, while EMOS optimises the spread of the postprocessed ensemble without guaranteeing realistic rainfall distributions. The choice of method is therefore to some degree dependent on end user requirements.</p><p>We use three rainfall observation data sets and different parametric distributions for UQM to determine the best setup. Mixed distributions, where gamma distributions are fitted separately to the bottom 90% and the top 10% of rainfall events are found to be the best choice because they are a better fit for the high rainfall values.</p><p>In several case studies, an overestimation of west coast rainfall in the forecasts is corrected by UQM. Although errors linked to forecasting rainfall in the wrong location or where no rainfall has been observed at all cannot be corrected by local statistical postprocessing, the overall forecast performance is improved by the UQM approach adopted here.</p><p>As in UQM, we use multiple observational datasets to determine the best EMOS setup. We select the gamma distribution, due to its suitability for both low and heavy rainfall events. Unlike in UQM, mixed distributions are unnecessary as the distribution is fitted across ensemble members at each timestep. EMOS and UQM are verified against observations and compared to each other using a variety of metrics including case studies, the Receiver Operating Characteristic and the Continuous Rank Probability Score.</p><p> </p><p> </p><p> </p><p> </p>


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 875
Author(s):  
Li Zhou ◽  
Lin Xu ◽  
Mingcai Lan ◽  
Jingjing Chen

Heavy rainfall events often cause great societal and economic impacts. The prediction ability of traditional extrapolation techniques decreases rapidly with the increase in the lead time. Moreover, deficiencies of high-resolution numerical models and high-frequency data assimilation will increase the prediction uncertainty. To address these shortcomings, based on the hourly precipitation prediction of Global/Regional Assimilation and Prediction System-Cycle of Hourly Assimilation and Forecast (GRAPES-CHAF) and Shanghai Meteorological Service-WRF ADAS Rapid Refresh System (SMS-WARR), we present an improved weighting method of time-lag-ensemble averaging for hourly precipitation forecast which gives more weight to heavy rainfall and can quickly select the optimal ensemble members for forecasting. In addition, by using the cross-magnitude weight (CMW) method, mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (CC), the verification results of hourly precipitation forecast for next six hours in Hunan Province during the 2019 typhoon Bailu case and heavy rainfall events from April to September in 2020 show that the revised forecast method can more accurately capture the characteristics of the hourly short-range precipitation forecast and improve the forecast accuracy and the probability of detection of heavy rainfall.


2019 ◽  
Vol 23 (7) ◽  
pp. 2863-2875 ◽  
Author(s):  
Sungmin O ◽  
Ulrich Foelsche

Abstract. Hydrology and remote-sensing communities have made use of dense rain-gauge networks for studying rainfall uncertainty and variability. However, in most regions, these dense networks are only available at small spatial scales (e.g., within remote-sensing subpixel areas) and over short periods of time. Just a few studies have applied a similar approach, i.e., employing dense gauge networks to catchment-scale areas, which limits the verification of their results in other regions. Using 10-year rainfall measurements from a network of 150 rain gauges, WegenerNet (WEGN), we assess the spatial uncertainty in observed heavy rainfall events. The WEGN network is located in southeastern Austria over an area of 20 km × 15 km with moderate orography. First, the spatial variability in rainfall in the region was characterized using a correlogram at daily and sub-daily scales. Differences in the spatial structure of rainfall events between warm and cold seasons are apparent, and we selected heavy rainfall events, the upper 10 % of wettest days during the warm season, for further analyses because of their high potential for causing hazards. Secondly, we investigated the uncertainty in estimating mean areal rainfall arising from a limited gauge density. The average number of gauges required to obtain areal rainfall with errors less than a certain threshold (≤20 % normalized root-mean-square error – RMSE – is considered here) tends to increase, roughly following a power law as the timescale decreases, while the errors can be significantly reduced by establishing regularly distributed gauges. Lastly, the impact of spatial aggregation on extreme rainfall was examined, using gridded rainfall data with various horizontal grid spacings. The spatial-scale dependence was clearly observed at high intensity thresholds and high temporal resolutions; e.g., the 5 min extreme intensity increases by 44 % for the 99.9th and by 25 % for the 99th percentile, with increasing horizontal resolution from 0.1 to 0.01∘. Quantitative uncertainty information from this study can guide both data users and producers to estimate uncertainty in their own observational datasets, consequently leading to the sensible use of the data in relevant applications. Our findings could be transferred to midlatitude regions with moderate topography, but only to a limited extent, given that regional factors that can affect rainfall type and process are not explicitly considered in the study.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 205 ◽  
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Jen-Her Chen ◽  
Liping Deng

During May and June (the Meiyu season) of 2017, Taiwan was affected by three heavy frontal rainfall events, which led to large economic losses. Using satellite observations and reanalysis data, this study investigates the impact of boreal summer intra-seasonal oscillations (BSISOs, including a 30–60 day ISO mode named BSISO1 and a 10–30 day ISO mode named BSISO2) on the heavy rainfall events in Taiwan during the 2017 Meiyu season. Our examinations show that BSISO2 is more important than BSISO1 in determining the formation of heavy rainfall events in Taiwan during the 2017 Meiyu season. The heavy rainfall events generally formed in Taiwan at phases 4–6 of BSISO2, when the enhanced southwesterly wind and moisture flux convergence center propagate northward into the Taiwan area. In addition, we examined the forecast rainfall data (at lead times of one day to 16 days) obtained from the National Centers for Environmental Prediction Global Forecast System (NCEPgfs) and the Taiwan Central Weather Bureau Global Forecast System (CWBgfs). Our results show that the better the model’s capability in forecasting the BSISO2 index is, the better the model’s capability in forecasting the timing of rainfall formation in Taiwan during the 2017 Meiyu season is. These findings highlight the importance of BSISO2 in affecting the rainfall characteristics in East Asia during the Meiyu season.


2017 ◽  
Vol 98 (5) ◽  
pp. 999-1013 ◽  
Author(s):  
Yali Luo ◽  
Renhe Zhang ◽  
Qilin Wan ◽  
Bin Wang ◽  
Wai Kin Wong ◽  
...  

Abstract During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.


2015 ◽  
Vol 172 (10) ◽  
pp. 2751-2776 ◽  
Author(s):  
P. Moudi Igri ◽  
Roméo S. Tanessong ◽  
D. A. Vondou ◽  
F. Kamga Mkankam ◽  
Jagabandhu Panda

2013 ◽  
Vol 1 (6) ◽  
pp. 6979-7014
Author(s):  
I. Yucel ◽  
A. Onen

Abstract. Quantitative precipitation estimates are obtained with more uncertainty under the influence of changing climate variability and complex topography from numerical weather prediction (NWP) models. On the other hand, hydrologic model simulations depend heavily on the availability of reliable precipitation estimates. Difficulties in estimating precipitation impose an important limitation on the possibility and reliability of hydrologic forecasting and early warning systems. This study examines the performance of the Weather Research and Forecasting (WRF) model and the Multi Precipitation Estimates (MPE) algorithm in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in the West Black Sea Region of Turkey. Precipitations derived from WRF model with and without three-dimensional variational (3-DVAR) data assimilation scheme and MPE algorithm at high spatial resolution (4 km) are compared with gauge precipitation. WRF-derived precipitation showed capabilities in capturing the timing of precipitation extremes and in some extent the spatial distribution and magnitude of the heavy rainfall events wheras MPE showed relatively weak skills in these aspects. WRF skills in estimating such precipitation characteristics are enhanced with the application of 3-DVAR scheme. Direct impact of data assimilation on WRF precipitation reached to 12% and at some points there exists quantitative match for heavy rainfall events, which are critical for hydrological forecast.


Sign in / Sign up

Export Citation Format

Share Document