scholarly journals Comparison of seven wind gust parameterizations over the European part of Russia

2018 ◽  
Vol 15 ◽  
pp. 251-255
Author(s):  
Maria Kurbatova ◽  
Konstantin Rubinstein ◽  
Inna Gubenko ◽  
Grigory Kurbatov

Abstract. Wind gusts are extreme events which can cause severe damage. Gusts can reach significant values even during medium winds. However, numerical atmospheric models are designed to reproduce average wind speed, not gusts. There are several approaches to estimating wind gusts. Seven different methods are applied to WRF-ARW model output. Results are compared to high-frequency wind speed measurements using ultrasonic anemometers and temperature profiler measurement at the same point in Moscow. Data gathered from synoptic station network over the European part of Russia were also included in the analysis to increase the statistics. None of the wind gust estimation methods shows best results at every skill score. The proposed hybrid method shows good balance between the probability of detection and the false alarm ratio estimates.

Author(s):  
Jonathan D. W. Kahl ◽  
Brandon R. Selbig ◽  
Austin R. Harris

AbstractWind gusts are common to everyday life and affect a wide range of interests including wind energy, structural design, forestry, and fire danger. Strong gusts are a common environmental hazard that can damage buildings, bridges, aircraft, and trains, and interrupt electric power distribution, air traffic, waterways transport, and port operations. Despite representing the component of wind most likely to be associated with serious and costly hazards, reliable forecasts of peak wind gusts have remained elusive. A project at the University of Wisconsin-Milwaukee is addressing the need for improved peak gust forecasts with the development of the meteorologically stratified gust factor (MSGF) model. The MSGF model combines gust factors (the ratio of peak wind gust to average wind speed) with wind speed and direction forecasts to predict hourly peak wind gusts. The MSGF method thus represents a simple, viable option for the operational prediction of peak wind gusts. Here we describe the results of a project designed to provide the site-specific gust factors necessary for operational use of the MSGF model at a large number of locations across the United States. Gust web diagrams depicting the wind speed- and wind direction-stratified gust factors, as well as peak gust climatologies, are presented for all sites analyzed.


2020 ◽  
Vol 1 (3) ◽  
pp. 83-87
Author(s):  
A.A. Jinov ◽  
◽  
D.V. Shevelev ◽  
N.E. Metlitsky ◽  
◽  
...  

Nowadays, the world is actively developing alternative energy based on solar energy and wind energy. The reason for this is the obvious signs of global warming, probably caused by the emissions of greenhouse gases - products of combustion of fossil fuels. The production of electrical energy at solar and wind power plants, unlike traditional thermal power plants, does not lead to the emission of greenhouse gases into the atmosphere. This article examines the potential of wind power plants in the central zone of the European part of Russia, using the example of the Kaluga region. The open climatic data METAR of the meteorological station of the Kaluga International Aerodrome named after Konstantin E. Tsiolkovsky (KLF) was used when writing the paper. Authors used data on the average wind speed for three-hour intervals over one year. An analysis of the wind speed was carried out and a graph of the probability of observing one or another wind speed was built. The graph showed that the average wind speed in the Kaluga region is about 2 ... 4 m / s. The calculation of the generation of electrical energy by a serial low-power wind generator was made, the coefficient of utilization of the installed capacity of the ICUM = 7% was determined. It has been established that the Kaluga region has a low wind energy potential. It is possible to obtain electricity from wind in the Kaluga Region, but calculations shown that the payback period for such power plants under these conditions, even without taking into account the costs of installation, auxiliary equipment and maintenance of the wind generator, is about 30 years. As a result of the study, it was concluded that there is no economic feasibility of operating low-power wind power plants in the central zone of the European part of Russia.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 428
Author(s):  
Sergey O. Grinevskiy ◽  
Sergey P. Pozdniakov ◽  
Ekaterina A. Dedulina

Groundwater recharge by precipitation is the main source of groundwater resources, which are widely used in the European part of Russia (ER). The main goal of the presented studies is to analyze the effect of observed climate changes on the processes of groundwater recharge. For this purpose analysis of long-term meteorological data as well as water budget and groundwater recharge simulation were used. First, meteorological data of 22 weather stations, located from south (Lat 46°) to north (Lat 66°) of ER for historical (1965–1988) and modern (1989–2018) periods were compared to investigate the observed latitudinal changes in annual and seasonal averages of precipitation, wind speed, air temperature, and humidity. Second, water budget in critical zone was simulated, using codes SURFBAL and HYDRUS-1D. SURFBAL generates upper boundary conditions for unsaturated flow modelling with HYDRUS-1D, taking into account snow accumulation and melting as well as topsoil freezing, which are important processes that affect runoff generation and the infiltration of meltwater. Water budget and groundwater recharge simulations based on long-term meteorological data and soil and vegetation parameters, typical for the investigated region. The simulation results for the historical and modern periods were compared to find out the impact of climate change on the average annual and seasonal averages of surface runoff, evapotranspiration, and groundwater recharge, as well as to assess latitudinal differences in water budget changes. The results of the simulation showed, that despite a significant increase in air temperature, groundwater recharge in the southern regions did not change, but even increased up to 50–60 mm/year in the central and northern regions of ER. There are two main reasons for this. First, the observed increase in air temperature is compensated by a decrease in wind speed, so there was no significant increase in evapotranspiration in the modern period. Also, the observed increase in air temperature and precipitation in winter is the main reason for the increase in groundwater recharge, since these climate changes lead to an increase in water infiltration into the soil in the cold period, when there is no evapotranspiration.


2021 ◽  
Author(s):  
Kirien Whan ◽  
Kate Saunders

<p>Extreme wind gusts have severe socio-economic impacts, so any source of extra information on this variable is invaluable for mitigating associated damages and<br />protecting vulnerable communities. Unfortunately, networks of ocial measurement stations are limited in their ability to observe wind gusts. Official stations<br />are separated by vast distances, so extreme wind gusts often go unobserved due to the highly localised nature of these events. A wealth of additional observa-<br />tions is available from personal weather stations (PWSs) and could be used in combination with official observations to observe extreme gust events. However,<br />concerns about underlying data quality have to date prevented the usage of gust data from PWSs.</p> <p>Research for other meteorological variables has demonstrated that with appropriate quality control PWSs can contribute high-quality observations that complement ocial measurements. It is well known that PWSs can provide useful and reliable temperature and precipitation observations. For crowd-sourced wind variables, the situation is more dicult. Crowd-sourced wind observations have di erent sources of error that pose signi cant challenges to quality control. For example, instrumentation is non-standard which results in di erent sensor sensitivities, and non-standard station placements introduce severe spatial in-consistencies and result in censoring of low wind speeds. Chen et al. (2021) recently developed a  exible approach to quality control and bias adjustment (QC/BA) that addresses this for wind speeds. They incorporate QC steps for official stations and develop new QC/BA steps to address the novel challenges posed by crowd-sourced data. Chen et al. (2021) showed after QC/BA, the wind speed climatology of a network of PWSs matched well with the climatology of ocial stations, and the wind speed variability between PWSs was similar to that of official  tations. Additionally, subsequent analysis has shown that the quality controlled and bias adjusted data from PWSs is able to detect small scale extreme wind speeds  ssociated with thunderstorms, that were not observed at official stations. No attempt has yet been made to quality control crowd-sourced observations of wind gusts  espite how impractical it is to obtain widespread observations of wind gusts using standard techniques.</p> <p>In this project we will develop the necessary methods and software for the QC/BA of wind gusts. As part of this, we will develop inter-variable consistency checks between crowd-sourced wind speeds, wind gusts and wind directions. We will also produce an open-source, high-quality wind gust data set from PWSs that can be used to improve forecasts, warnings, and veri cation of extreme gusts.</p> <p><strong>References</strong></p> <p>Chen, J., Saunders, K. & Whan, K. (2021), `Quality control and bias correction of citizen science wind observations', <em>Quarterly Journal of the Royal Meteo-</em><br /><em>rological Society (under review) </em>.</p>


Author(s):  
Lev V. Razumovsky

On the basis of author's graphical analysis method, the typification of lake ecosystems transformation scenarios depending on the size of lakes was carried out. It was confirmed that the type of transformation depends not only on size of the lake, but also on the landscape and climatic region in which it is located. The distinctive features of lake ecosystems transformation types in the European part of Russia and in Western Siberia were analyzed and compared.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2011 ◽  
pp. 101-116 ◽  
Author(s):  
B. Yu. Teteryuk

The results of a sintaxonomical study of plant communities of the Yamozero lake (the North-East of the European part of Russia) are presented. The diversity of the aquatic and helophytic vegetation of the Yamozero lake consists of 16 associations and 2 communities of 6 unions, 4 orders and 2 classes of the floristic classification: Potamogetonetea (7 associations, 2 communities), Phragmito-Magnocaricetea (9 associations). Many of described associations are widely distributed in the Central and the Eastern Europe. Some associations have the boundaries of their ranges. Some communities include 2 rare species of regional level: Isoetes setacea and Sagittaria natans.


2018 ◽  
Vol 52 (1) ◽  
pp. 91-100
Author(s):  
E. Yu. Blagoveshchenskaya

The paper provides the results of seven-year study of downy mildew on Skadovsky Zvenigorod Biological Station of Moscow State University (ZBS MSU, Moscow Region). A total of 29 species of Peronosporales (Oomycota) were revealed during the study. An annotated list of species is presented, among them Peronospora anemones is recorded for the first time for Russia, P. chelidonii and P. stachydis are new for the European part of Russia, 8 species are new for the Moscow Region.


2008 ◽  
pp. 76-85 ◽  
Author(s):  
B. Yu. Teteryuk

The results of a syntaxonomical study of plant communities of the large lake Donty (North-East of the European part of Russia) are presented. The diversity of hydrophytic vegetation has been classified into 3 classes (Lemnetea, Potametea and Phragmito-Magnocaricetea), 5 orders, 8 alliances, 20 associations and 1 community. Subasso­ciation Scolochloetum festucaceae caricetosum aquatilis is new. Communities of associations Caricetum aquatilis, Equisetetum fluviatilis, Potamo—Nupharetum luteae, Potametum perfo­liati are mostly wide distributed, while these of Phragmitetum communis, Scolochloetum festucaceae ones are relatively rare as well as Lemno—Spirodeletum polyrchizae, Elodeo—Potametum alpini, Potamo—Nupharetum pumilae, Potametum praelongi and Scirpetum lacustris are very rare. Some communities contain 2 regional rare species: Scolochloa festucacea and Ranunculus lingua.


Sign in / Sign up

Export Citation Format

Share Document