scholarly journals Response of bacterioplankton activity in an Arctic fjord system to elevated <i>p</i>CO<sub>2</sub>: results from a mesocosm perturbation study

2013 ◽  
Vol 10 (1) ◽  
pp. 297-314 ◽  
Author(s):  
J. Piontek ◽  
C. Borchard ◽  
M. Sperling ◽  
K. G. Schulz ◽  
U. Riebesell ◽  
...  

Abstract. The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The activity of natural extracellular enzyme assemblages increased in response to acidification. Rates of β-glucosidase and leucine-aminopeptidase increased along the gradient of mesocosm pCO2. A decrease in seawater pH of 0.5 units almost doubled rates of both enzymes. Heterotrophic bacterial activity was closely coupled to phytoplankton productivity in this experiment. The bacterioplankton community responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity. Time-integrated primary production and bacterial protein production were positively correlated, strongly suggesting that higher amounts of phytoplankton-derived organic matter were assimilated by heterotrophic bacteria at increased primary production. Primary production increased under high pCO2 in this study, and it can be suggested that the efficient heterotrophic carbon utilisation had the potential to counteract the enhanced autotrophic CO2 fixation. However, our results also show that beneficial pCO2-related effects on bacterial activity can be mitigated by the top-down control of bacterial abundances in natural microbial communities.

2012 ◽  
Vol 9 (8) ◽  
pp. 10467-10511 ◽  
Author(s):  
J. Piontek ◽  
C. Borchard ◽  
M. Sperling ◽  
K. G. Schulz ◽  
U. Riebesell ◽  
...  

Abstract. The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The bacterioplankton communities responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity and revealed a close coupling of heterotrophic bacterial activity to phytoplankton productivity in this experiment. The natural extracellular enzyme assemblages showed increased activity in response to moderate acidification. A decrease in seawater pH of 0.5 units roughly doubled rates of β-glucosidase and leucine-aminopeptidase. Activities of extracellular enzymes in the mesocosms were directly related to both seawater pH and primary production. Also primary production and bacterial protein production in the mesocosms at different pCO2 were positively correlated. Therefore, it can be suggested that the efficient heterotrophic carbon utilization in this Arctic microbial food web had the potential to counteract increased phytoplankton production that was achieved under elevated pCO2 in this study. However, our results also show that the transfer of beneficial pCO2-related effects on the cellular bacterial metabolism to the scale of community activity and organic matter degradation can be mitigated by the top-down control of bacterial abundances in natural microbial communities.


Polar Science ◽  
2015 ◽  
Vol 9 (4) ◽  
pp. 382-388 ◽  
Author(s):  
A.A. Mohamed Hatha ◽  
C.S. Neethu ◽  
S.M. Nikhil ◽  
K.M. Mujeeb Rahiman ◽  
K.P. Krishnan ◽  
...  

2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


2013 ◽  
Vol 10 (1) ◽  
pp. 567-582 ◽  
Author(s):  
S. Endres ◽  
J. Unger ◽  
N. Wannicke ◽  
M. Nausch ◽  
M. Voss ◽  
...  

Abstract. The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena have a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, they are able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters, including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days under aeration with low (180 μatm), medium (380 μatm), and high (780 μatm) CO2 concentrations. Obtained pCO2 levels in the treatments were on median 315, 353, and 548 μatm CO2, respectively. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn influenced the concentration of mucinous substances and the recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment. In total, significantly more mucinous substances accumulated in the high pCO2 treatment, reaching 363 μg Xeq L−1 compared to 269 μg Xeq L−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. We hypothesise from our results that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.


2019 ◽  
Vol 225 ◽  
pp. 106239 ◽  
Author(s):  
Èric Jordà Molina ◽  
Marc J. Silberberger ◽  
Valentin Kokarev ◽  
Henning Reiss

Sign in / Sign up

Export Citation Format

Share Document