scholarly journals Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe

2014 ◽  
Vol 11 (13) ◽  
pp. 3421-3435 ◽  
Author(s):  
A. Bastos ◽  
C. M. Gouveia ◽  
R. M. Trigo ◽  
S. W. Running

Abstract. In the last decade, Europe has been stricken by two outstanding heatwaves, the 2003 event in western Europe and the 2010 episode over Russia. Both events were characterized by record-breaking temperatures and widespread socio-economic impacts, including significant increments on human mortality, decreases in crop yields and in hydroelectric production. Previous works have shown that an extreme climatic event does not always imply an extreme response by ecosystems. This work attempts to assess how extreme was the vegetation response to the heatwaves during 2003 and 2010 in Europe, in order to quantify the impacts of the two events on carbon fluxes in plant productivity and to identify the physical drivers of the observed response. Heatwave impacts in vegetation productivity were analysed using MODIS products from 2000 to 2011. Both 2003 and 2010 events led to marked decreases in plant productivity, well below the climatological range of variability, with carbon uptake by vegetation during August reaching negative anomalies of more than 2 standard deviations, although the 2010 event affected a much larger extent. A differentiated response in autotrophic respiration was observed, depending on land-cover types, with forests increasing respiration rates in response to the heatwaves, while in crops respiration rates decreased. The widespread decrease in carbon uptake matched the regions where very high temperature values were also preceded by a long period of below-average precipitation, leading to strong soil moisture deficits. In the case of the 2003 heatwave, results indicate that moisture deficits coupled with high temperatures drove the extreme response of vegetation, while for the 2010 event very high temperatures appear to be the sole driver of very low productivity.

2013 ◽  
Vol 10 (10) ◽  
pp. 15879-15911 ◽  
Author(s):  
A. Bastos ◽  
C. M. Gouveia ◽  
R. M. Trigo ◽  
S. W. Running

Abstract. In the last decade, Europe was stricken by two outstanding heatwaves, the 2003 event in Western Europe and the recent 2010 episode over Russia. Both extreme events were characterised by record-breaking temperatures, and widespread socio-economic impacts, including significant increments on mortality rates, decreases in crop production and in hydroelectric production. This work aims to assess the influence of both mega-heatwaves on vegetation carbon uptake, using yearly Net Primary Production (NPP) and monthly Net Photosynthesis (PsN) data derived from satellite imagery obtained from MODIS for the period 2000–2011. In 2010, markedly low productivity was observed over a very large area in Russia, at monthly, seasonal and yearly scales, falling below 50% of average NPP. This decrease in NPP in 2010 was far more intense than the one affecting Western Europe in 2003, which corresponded to 20–30% of the average, and affected a~much larger extent. Total NPP anomalies reached −19 Tg C for the selected regions in France during 2003 and −94 Tg C for western Russia in 2010, which corresponds almost to the magnitude of total NPP anomaly during 2010 for the whole Europe. Overall, the widespread negative PsN anomalies in both regions match the patterns of very high temperature values preceded by a long period of below-average precipitation, leading to strong soil moisture deficits, stressing the role of soil-atmosphere coupling. In the case of 2003 heatwave, results indicate a strong influence of moisture deficits coupled with high temperatures in the response of vegetation, while for the 2010 event very high temperatures appear to be the main driver of very low NPP.


Author(s):  
Debashis Mukherji ◽  
Joachim Rösler ◽  
Pavel Strunz ◽  
Ralph Gilles ◽  
Gerhard Schumacher ◽  
...  

2019 ◽  
Vol 70 (3) ◽  
pp. 234
Author(s):  
Xiaojin Zou ◽  
Zhanxiang Sun ◽  
Ning Yang ◽  
Lizhen Zhang ◽  
Wentao Sun ◽  
...  

Intercropping is commonly practiced worldwide because of its benefits to plant productivity and resource-use efficiency. Belowground interactions in these species-diverse agro-ecosystems can greatly contribute to enhancing crop yields; however, our understanding remains quite limited of how plant roots might interact to influence crop biomass, photosynthetic rates, and the regulation of different proteins involved in CO2 fixation and photosynthesis. We address this research gap by using a pot experiment that included three root-barrier treatments with full, partial and no root interactions between foxtail millet (Setaria italica (L.) P.Beauv.) and peanut (Arachis hypogaea L.) across two growing seasons. Biomass of millet and peanut plants in the treatment with full root interaction was 3.4 and 3.0 times higher, respectively, than in the treatment with no root interaction. Net photosynthetic rates also significantly increased by 112–127% and 275–306% in millet and peanut, respectively, with full root interaction compared with no root interaction. Root interactions (without barriers) contributed to the upregulation of key proteins in millet plants (i.e. ribulose 1,5-biphosphate carboxylase; chloroplast β-carbonic anhydrase; phosphoglucomutase, cytoplasmic 2; and phosphoenolpyruvate carboxylase) and in peanut plants (i.e. ribulose 1,5-biphosphate carboxylase; glyceraldehyde-3-phosphate dehydrogenase; and phosphoglycerate kinase). Our results provide experimental evidence of a molecular basis that interspecific facilitation driven by positive root interactions can contribute to enhancing plant productivity and photosynthesis.


1988 ◽  
Vol 28 (3) ◽  
pp. 315-321 ◽  
Author(s):  
J. T. Malmo ◽  
O. J. Jøkberg ◽  
G. A. Slettemoen
Keyword(s):  

During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


2004 ◽  
Vol 26 (2) ◽  
pp. 84-86 ◽  
Author(s):  
Leo van Wüllen ◽  
Georg Schwering ◽  
Ernst Naumann ◽  
Martin Jansen
Keyword(s):  
Mas Nmr ◽  

1989 ◽  
Vol 87 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Peter Hofmann ◽  
Siegfried J. L. Hagen ◽  
Gerhard Schanz ◽  
Alfred Skokan

2009 ◽  
Vol 9 (12) ◽  
pp. 4185-4196 ◽  
Author(s):  
A. Devasthale ◽  
H. Grassl

Abstract. A daytime climatological spatio-temporal distribution of high opaque ice cloud (HOIC) classes over the Indian subcontinent (0–40° N, 60° E–100° E) is presented using 25-year data from the Advanced Very High Resolution Radiometers (AVHRRs) for the summer monsoon months. The HOICs are important for regional radiative balance, precipitation and troposphere-stratosphere exchange. In this study, HOICs are sub-divided into three classes based on their cloud top brightness temperatures (BT). Class I represents very deep convection (BT<220 K). Class II represents deep convection (220 K


1987 ◽  
Vol 26 (S3-3) ◽  
pp. 2011 ◽  
Author(s):  
C. W. Chu ◽  
J. Bechtold ◽  
L. Gao ◽  
P. H. Hor ◽  
Z. J. Huang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document