scholarly journals Is deoxygenation detectable before warming in the thermocline?

2019 ◽  
Author(s):  
Angélique Hameau ◽  
Thomas L. Frölicher ◽  
Juliette Mignot ◽  
Fortunat Joos

Abstract. Multiple lines of evidence from observation- and model-based studies show that anthropogenic greenhouse gas emissions cause ocean warming and oxygen depletion, with adverse impacts on marine organisms and ecosystems. Temperature is considered as one of the main indicators of climate change, but, in the thermocline, anthropogenic changes in biogeochemical tracers such as oxygen may emerge from the bounds of natural variability before changes in temperature. Here, we compare the local time of emergence (ToE) of anthropogenic temperature and oxygen changes in the thermocline within an ensemble of Earth system model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Anthropogenic deoxygenation emerges from natural internal variability before warming in 35 ± 11 % of the global thermocline. Earlier emergence of oxygen than temperature change is simulated by all models in parts of the subtropical gyres of the Pacific and the Southern Ocean. Earlier detectable changes in oxygen than temperature are typically related to decreasing trends in ventilation. The supply of oxygen-rich surface waters to the thermocline is reduced as evidenced by an increase in apparent oxygen utilisation over the simulations. Concomitantly, the propagation of the warming signal is hindered by slowing ventilation, which delays the warming in the thermocline. As the magnitudes of internal variability and simulated temperature and oxygen changes, which determine ToE, vary considerably among models, we compute the local ToE relative to the global mean ToE within each model. This reduces the inter-model spread in the relative ToE compared to the traditionally evaluated absolute ToE. Our results underline the importance of an ocean biogeochemical observing system and that the detection of anthropogenic impacts becomes more likely when using multi-tracer observations.

2020 ◽  
Vol 17 (7) ◽  
pp. 1877-1895
Author(s):  
Angélique Hameau ◽  
Thomas L. Frölicher ◽  
Juliette Mignot ◽  
Fortunat Joos

Abstract. Anthropogenic greenhouse gas emissions cause ocean warming and oxygen depletion, with adverse impacts on marine organisms and ecosystems. Warming is one of the main indicators of anthropogenic climate change, but, in the thermocline, changes in oxygen and other biogeochemical tracers may emerge from the bounds of natural variability prior to warming. Here, we assess the time of emergence (ToE) of anthropogenic change in thermocline temperature and thermocline oxygen within an ensemble of Earth system model simulations from the fifth phase of the Coupled Model Intercomparison Project. Changes in temperature typically emerge from internal variability prior to changes in oxygen. However, in about a third (35±11 %) of the global thermocline deoxygenation emerges prior to warming. In these regions, both reduced ventilation and reduced solubility add to the oxygen decline. In addition, reduced ventilation slows the propagation of anthropogenic warming from the surface into the ocean interior, further contributing to the delayed emergence of warming compared to deoxygenation. Magnitudes of internal variability and of anthropogenic change, which determine ToE, vary considerably among models leading to model–model differences in ToE. We introduce a new metric, relative ToE, to facilitate the multi-model assessment of ToE. This reduces the inter-model spread compared to the traditionally evaluated absolute ToE. Our results underline the importance of an ocean biogeochemical observing system and that the detection of anthropogenic impacts becomes more likely when using multi-tracer observations.


2020 ◽  
Author(s):  
Angélique Hameau ◽  
Thomas Frölicher ◽  
Juliette Mignot ◽  
Fortunat Joos

<div>Multiple lines of evidence from observation- and model-based studies show that anthropogenic greenhouse gas emissions cause ocean warming and oxygen depletion, with adverse impacts on marine organisms and ecosystems.</div><div>Temperatures increase is a primary indicator for climate change. However, in the thermocline, changes in oxygen and other biogeochemical tracers might be detectable before warming (Hameau et al., 2019a).</div><div>Here, we compare the local time of emergence (ToE) of anthropogenic temperature and oxygen changes in the thermocline within an ensemble of Earth system model simulations from the CMIP5 dataset (Hameau et al., 2019b).</div><div>Generally, warming emerges from internal variability prior to changes in oxygen.</div><div>Yet, in 35$\pm$11\% of the global thermocline, anthropogenic deoxygenation is detectable before warming.</div><div>Earlier emergence of oxygen changes is typically related to decreasing trends in ventilation, which reduce the supply of oxygen-rich surface waters to the thermocline.</div><div>In addition, reduced ventilation slows the propagation of anthropogenic warming from the surface into the ocean interior, further contributing to the delayed emergence of warming compared to deoxygenation.</div><div>As the magnitude of simulated interval variability and of simulated anthropogenic changes vary considerably across models, we introduce the relative ToE metric. This reduces the inter-model spread, allowing for a better comparison among models.</div><div>Our results underline the importance of an ocean biogeochemical observing system and that the detection of anthropogenic impacts becomes more likely when using multi-tracer observations.</div>


2017 ◽  
Author(s):  
Richard Wartenburger ◽  
Martin Hirschi ◽  
Markus G. Donat ◽  
Peter Greve ◽  
Andy J. Pitman ◽  
...  

Abstract. This article extends a previous study (Seneviratne et al., 2016) to provide regional analyses of changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. These projections are based on simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). A selection of example results are presented here, but users can visualize specific indices of interest using the online tool. This implementation enables a direct assessment of regional climate changes associated with global temperature targets, such as the 2 degree and 1.5 degree limits agreed within the 2015 Paris Agreement.


2020 ◽  
Author(s):  
June-Yi Lee ◽  
Kyung-Sook Yun ◽  
Arjun Babu ◽  
Young-Min Yang ◽  
Eui-Seok Chung ◽  
...  

<p><span>The Coupled Model Intercomparison Project Phase 5 (CMIP5) models have showed substantial inter-model spread in estimating annual global-mean precipitation change per one-degree greenhouse-gas-induced warming (precipitation sensitivity), ranging from -4.5</span><span>–4.2</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the Representative Concentration Pathway (RCP) 2.6, the lowest emission scenario, to 0.2–4.0</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the RCP 8.5, the highest emission scenario. The observed-based estimations in the global-mean land precipitation sensitivity during last few decades even show much larger spread due to the considerable natural interdecadal variability, role of anthropogenic aerosol forcing, and uncertainties in observation. This study tackles to better quantify and constrain global land precipitation change in response to global warming by analyzing the new range of Shared Socio-economic Pathway (SSP) scenarios in the </span><span>Coupled Model Intercomparison Project Phase 6 (CMIP6) compared with RCP scenarios in the CMIP5. We show that the range of projected change in annual global-mean land (ocean) precipitation by the end of the 21<sup>st</sup>century relative to the recent past (1995-2014) in the 23 CMIP6 models is over 50% (20%) larger than that in corresponding scenarios of the 40 CMIP5 models. The estimated ranges of precipitation sensitivity in four Tier-1 SSPs are also larger than those in corresponding CMIP5 RCPs. The large increase in projected precipitation change in the highest quartile over ocean is mainly due to the increased number of high equilibrium climate sensitivity (ECS) models in CMIP6 compared to CMIP5, but not over land due to different response of thermodynamic moisture convergence and dynamic processes to global warming. We further discuss key challenges in constraining future precipitation change and source of uncertainties in land precipitation change.</span></p>


2013 ◽  
Vol 26 (18) ◽  
pp. 6844-6858 ◽  
Author(s):  
Nathan P. Gillett ◽  
Vivek K. Arora ◽  
Damon Matthews ◽  
Myles R. Allen

Abstract The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenarios and directly relates emissions to temperature. It is therefore a potentially important tool for climate mitigation policy. The transient climate response to cumulative carbon emissions (TCRE), defined as the ratio of global-mean warming to cumulative emissions at CO2 doubling in a 1% yr−1 CO2 increase experiment, ranges from 0.8 to 2.4 K EgC−1 in 15 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5)—a somewhat broader range than that found in a previous generation of carbon–climate models. Using newly available simulations and a new observational temperature dataset to 2010, TCRE is estimated from observations by dividing an observationally constrained estimate of CO2-attributable warming by an estimate of cumulative carbon emissions to date, yielding an observationally constrained 5%–95% range of 0.7–2.0 K EgC−1.


2020 ◽  
Author(s):  
Zebedee R. J. Nicholls ◽  
Malte Meinshausen ◽  
Jared Lewis ◽  
Robert Gieseke ◽  
Dietmar Dommenget ◽  
...  

Abstract. Here we present results from the first phase of the Reduced Complexity Model Intercomparison Project (RCMIP). RCMIP is a systematic examination of reduced complexity climate models (RCMs), which are used to complement and extend the insights from more complex Earth System Models (ESMs), in particular those participating in the Sixth Coupled Model Intercomparison Project (CMIP6). In Phase 1 of RCMIP, with 14 participating models namely ACC2, AR5IR (2 and 3 box versions), CICERO-SCM, ESCIMO, FaIR, GIR, GREB, Hector, Held et al. two layer model, MAGICC, MCE, OSCAR and WASP, we highlight the structural differences across various RCMs and show that RCMs are capable of reproducing global-mean surface air temperature (GSAT) changes of ESMs and historical observations. We find that some RCMs are capable of emulating the GSAT response of CMIP6 models to within a root-mean square error of 0.2 °C (of the same order of magnitude as ESM internal variability) over a range of scenarios. Running the same model configurations for both RCP and SSP scenarios, we see that the SSPs exhibit higher effective radiative forcing throughout the second half of the 21st Century. Comparing our results to the difference between CMIP5 and CMIP6 output, we find that the change in scenario explains approximately 46 % of the increase in higher end projected warming between CMIP5 and CMIP6. This suggests that changes in ESMs from CMIP5 to CMIP6 explain the rest of the increase, hence the higher climate sensitivities of available CMIP6 models may not be having as large an impact on GSAT projections as first anticipated. A second phase of RCMIP will complement RCMIP Phase 1 by exploring probabilistic results and emulation in more depth to provide results available for the IPCC's Sixth Assessment Report author teams.


2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2019 ◽  
Vol 32 (5) ◽  
pp. 1443-1459 ◽  
Author(s):  
Tao Geng ◽  
Yun Yang ◽  
Lixin Wu

Abstract Changes of the Pacific decadal oscillation (PDO) under global warming are investigated by using outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and a theoretical midlatitude air–sea coupled model. In a warming climate, the decadal variability of the PDO is found to be significantly suppressed, with the amplitude reduced and the decadal cycle shifted toward a higher-frequency band. We used the theoretical model put forward by Goodman and Marshall (herein the GM model) to underpin the potential mechanisms. The GM model exhibits a growing coupled mode that resembles the simulated PDO. It is found that the suppression of the PDO appears to be associated with the acceleration of Rossby waves due to the enhanced oceanic stratification under global warming. This shortens the PDO period and reduces PDO amplitude by limiting the growth time of the coupled mode. The GM model also suggests that the increase of growth rate due to strengthening of oceanic stratification tends to magnify the PDO amplitude, counteracting the Rossby wave effect. This growth rate influence, however, plays a secondary role.


2021 ◽  
pp. 1
Author(s):  
Jiamin Wang ◽  
Xiaodan Guan ◽  
Yuping Guan ◽  
Kaiwei Zhu ◽  
Rui Shi ◽  
...  

AbstractDue to global warming, the lengths of the four seasons, which are always taken as constant values, have experienced significant variations with rising temperature. Such changes play different roles on regional climate change, with the most significant effect on drylands. To guarantee local crop yields and preserve ecosystems, the identification of the changes of the four seasons in drylands is important. Our results show that, relative to humid lands, changing trends in lengths of spring, summer and autumn were particularly enhanced in drylands of the Northern Hemisphere mid-latitudes during 1951-2020. In this period, summer length has increased by 0.51 day per year, while spring and autumn lengths have contracted by 0.14 and 0.14 day per year, respectively. However, the enhanced changes in drylands did not appear in winter length. Such changes of spring, summer and autumn in drylands are dominated by internal variability over the entire study period, with a stronger external forcing effect on drylands than on humid lands. In drylands, the external forcing contributed to the changes in lengths of spring, summer and autumn by 30.1%, 42.2% and 29.4%, respectively. The external forcing has become an increasingly important component since 1990, with the ability to dominate all seasons in drylands after 2010. Nevertheless, only one out of the 16 Coupled Model Intercomparison Project Phase 6 (CMIP6) models used in this study can capture the enhanced changes in the lengths of spring, summer and autumn in drylands. Further investigation on the local effects of changes in seasons on agriculture and ecosystem would be needed, especially for the fragile regions.


2020 ◽  
Author(s):  
Fei Zheng ◽  
Renping Lin ◽  
Xiao Dong

<p>Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), the El Niño (EN) and La Niña (LN) events in positive and negative Pacific Decadal Oscillation (PDO) phases are examined. In the observational data, with EN (LN) events the positive (negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive (negative) PDO phases than in negative (positive) phases. Meanwhile, the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more (58% less) frequent than LN in positive (negative) PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.</p>


Sign in / Sign up

Export Citation Format

Share Document