scholarly journals Technical note: Facilitating the use of low-cost methane (CH<sub>4</sub>) sensors in flux chambers – calibration, data processing, and an open source make-it-yourself logger

Author(s):  
David Bastviken ◽  
Jonatan Nygren ◽  
Jonathan Schenk ◽  
Roser Parellada Massana ◽  
Nguyen Thanh Duc

Abstract. A major bottleneck regarding the efforts to better quantify greenhouse gas fluxes, map sources and sinks, and understand flux regulation, is the shortage of low-cost and accurate-enough measurement methods. The studies of methane (CH4) – a long-lived greenhouse gas increasing rapidly but irregularly in the atmosphere for unclear reasons, and with poorly understood source-sink attribution – suffer from such method limitations. This study present new calibration and data processing approaches for use of a low-cost CH4 sensor in flux chambers. Results show that the change in relative CH4 levels can be determined at rather high accuracy in the 2–700 ppm range, with modest efforts of collecting reference samples in situ, and without continuous access to expensive reference instruments. These results open for more affordable and time-effective measurements of CH4 in flux chambers. To facilitate such measurements, we also provide a description for building and using an Arduino logger for CH4, carbon dioxide (CO2), humidity, and temperature.

2020 ◽  
Vol 17 (13) ◽  
pp. 3659-3667 ◽  
Author(s):  
David Bastviken ◽  
Jonatan Nygren ◽  
Jonathan Schenk ◽  
Roser Parellada Massana ◽  
Nguyen Thanh Duc

Abstract. A major bottleneck regarding the efforts to better quantify greenhouse gas fluxes, map sources and sinks, and understand flux regulation is the shortage of low-cost and accurate-enough measurement methods. The studies of methane (CH4) – a long-lived greenhouse gas increasing rapidly but irregularly in the atmosphere for unclear reasons, and with poorly understood source–sink attribution – suffer from such method limitations. This study presents new calibration and data processing approaches for use of a low-cost CH4 sensor in flux chambers. Results show that the change in relative CH4 levels can be determined at rather high accuracy in the 2–700 ppm mole fraction range, with modest efforts of collecting reference samples in situ and without continuous access to expensive reference instruments. This opens possibilities for more affordable and time-effective measurements of CH4 in flux chambers. To facilitate such measurements, we also provide a description for building and using an Arduino logger for CH4, carbon dioxide (CO2), relative humidity, and temperature.


2020 ◽  
Vol 24 (7) ◽  
pp. 3417-3430 ◽  
Author(s):  
Nguyen Thanh Duc ◽  
Samuel Silverstein ◽  
Martin Wik ◽  
Patrick Crill ◽  
David Bastviken ◽  
...  

Abstract. Aquatic ecosystems are major sources of greenhouse gases (GHGs). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks of natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive device that includes an easily mobile diffusive flux chamber and a bubble counter all in one. In addition to automatically collecting gas samples for subsequent various analyses in the laboratory, this device also utilized a low-cost carbon dioxide (CO2) sensor (SenseAir, Sweden) and methane (CH4) sensor (Figaro, Japan) to measure GHG fluxes. Each of the devices was equipped with an XBee module to enable local radio communication (DigiMesh network) for time synchronization and data readout at a server controller station on the lakeshore. The software of this server controller was operated on a low-cost computer (Raspberry Pi), which has a 3G connection for remote control and monitor functions from anywhere in the world. This study shows the potential of a low-cost automatic sensor network system for studying GHG fluxes on lakes in remote locations.


2015 ◽  
Vol 12 (17) ◽  
pp. 14619-14645 ◽  
Author(s):  
A. Lorke ◽  
P. Bodmer ◽  
C. Noss ◽  
Z. Alshboul ◽  
M. Koschorreck ◽  
...  

Abstract. Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.


2015 ◽  
Vol 12 (23) ◽  
pp. 7013-7024 ◽  
Author(s):  
A. Lorke ◽  
P. Bodmer ◽  
C. Noss ◽  
Z. Alshboul ◽  
M. Koschorreck ◽  
...  

Abstract. Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.


2018 ◽  
Vol 9 (3-4) ◽  
pp. 56
Author(s):  
Henok Ali ◽  
Momen Odeh ◽  
Ahmed Odeh ◽  
Ali Ahmed Abou-ElNour ◽  
Mohammed Tarique

This paper presents a reliable and low cost greenhouse gas measurement system. The system mainly consists of an unmanned aerial vehicle (UAV), a set of calibrated sensors, a wireless system, and a microcontroller. The system can measure the concentration of greenhouse gases namely carbon dioxide (CO2), methane (CH4), and ozone (O3) at different altitudes. It can also measure temperature, humidity, and atmospheric pressure. The system is able to send data to a remote monitoring station. The UAV is equipped with image processing based navigation and landing system so that it can land autonomously on a designated place. To ensure safe landing the system uses a specially designed parachute. This paper also presents some data generated by the system.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 24-25
Author(s):  
Agbee L Kpogo ◽  
Jismol Jose ◽  
Josiane Panisson ◽  
Bernardo Predicala ◽  
Alvin Alvarado ◽  
...  

Abstract The impact of feeding growing pigs with high wheat millrun diets on the global warming potential (GWP) of pork production was investigated. In study 1, a 2 × 2 factorial arrangement of wheat millrun (0 or 30%) and multi-carbohydrase enzyme (0 or 1 mg kg-1) as main effects was utilized. For each of 16 reps, 6 pigs (60.2±2.2 kg BW) were housed in environmental chambers for 14d. Air samples were collected and analyzed for carbon dioxide (CO2); nitrous oxide (N2O); and methane (CH4). In study 2, data from study 1 and performance data obtained from a previous feeding trial were utilized in a life cycle assessment (LCA) framework that included feed production. The Holos farm model (Agriculture and Agri-Food Canada, Lethbridge. AB) was used to estimate emissions from feed production. In study 1, total manure output from pigs fed 30% wheat millrun diets was 30% greater than pigs on the 0% wheat millrun diets (P &lt; 0.05), however, Feeding diets with 30% millrun did not affect greenhouse gas (GHG) output (CH4, 4.7, 4.9; N2O, 0.45, 0.42; CO2, 1610, 1711; mg s-1 without or with millrun inclusion, respectively; P &gt; 0.78). Enzyme supplementation had no effect on GHG production (CH4, 4.5, 5.1; N2O, 0.46, 0.42; CO2, 1808, 1513; mg s-1 without or with enzymes, respectively; P &gt; 0.51). In study 2, the LCA indicated that the inclusion of 30% wheat millrun in diets for growing pigs resulted in approximately a 25% reduction in GWP when compared to the no wheat millrun diets. Our results demonstrate that 30% wheat millrun did not increase GHG output from the pigs, and thus the inclusion of wheat millrun in diets of growing pigs can reduce the GWP of pork production.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2020 ◽  
Vol 2 (2) ◽  
pp. 280-293
Author(s):  
Mathew G. Pelletier ◽  
Greg A. Holt ◽  
John D. Wanjura

The removal of plastic contamination in cotton lint is an issue of top priority to the U.S. cotton industry. One of the main sources of plastic contamination showing up in marketable cotton bales, at the U.S. Department of Agriculture’s classing office, is plastic from the module wrap used to wrap cotton modules produced by the new John Deere round module harvesters. Despite diligent efforts by cotton ginning personnel to remove all plastic encountered during unwrapping of the seed cotton modules, plastic still finds a way into the cotton gin’s processing system. To help mitigate plastic contamination at the gin; an inspection system was developed that utilized low-cost color cameras to see plastic on the module feeder’s dispersing cylinders, that are normally hidden from view by the incoming feed of cotton modules. This technical note presents the design of an automated intelligent machine-vision guided cotton module-feeder inspection system. The system includes a machine-learning program that automatically detects plastic contamination in order to alert the cotton gin personnel as to the presence of plastic contamination on the module feeder’s dispersing cylinders. The system was tested throughout the entire 2019 cotton ginning season at two commercial cotton gins and at one gin in the 2018 ginning season. This note describes the over-all system and mechanical design and provides an over-view and coverage of key relevant issues. Included as an attachment to this technical note are all the mechanical engineering design files as well as the bill-of-materials part source list. A discussion of the observational impact the system had on reduction of plastic contamination is also addressed.


2006 ◽  
Vol 6 (3) ◽  
pp. 5485-5504
Author(s):  
A. Kerkweg ◽  
R. Sander ◽  
H. Tost ◽  
P. Jöckel

Abstract. We present the submodels OFFLEM, ONLEM, and TNUDGE for the Modular Earth Submodel System (MESSy). Prescribed emissions from input files are handled by OFFLEM. ONLEM deals with online-calculated emissions, i.e., emissions that are calculated during the simulation. The submodel TNUDGE uses the ''tracer nudging'' technique for pseudo-sources and -sinks. For species with highly uncertain emission fluxes and/or with sufficiently long lifetimes, e.g., CH4, it is common to create such pseudo-fluxes by prescribing the observed mixing ratio of the species at a given boundary (e.g., the mixing ratio of methane at the surface, or the ozone mixing ratio at the tropopause). All three submodels substantially simplify the inclusion of emissions into a model. Specific emissions can easily be switched on or off. New prescribed emissions can be included without rewriting any code. New online emissions only require one additional subroutine containing the new parameterization. A major advantage is that input fields at arbitrary resolution can be used. The problem of incompatible grids between emission data and model is overcome by utilizing the MESSy data import interface. To further simplify the creation of new offline emission data, the preprocessing program EDGAR2NC is provided. EDGAR2NC transforms files from the EDGAR format into the netCDF format which is required by OFFLEM. The presented routines are a part of the community modeling project MESSy and can be made available for use to the atmospheric modeling community.


Sign in / Sign up

Export Citation Format

Share Document