scholarly journals Factors limiting heterotrophic bacterial production in the southern Pacific Ocean

2008 ◽  
Vol 5 (3) ◽  
pp. 833-845 ◽  
Author(s):  
F. Van Wambeke ◽  
S. Bonnet ◽  
T. Moutin ◽  
P. Raimbault ◽  
G. Alarcón ◽  
...  

Abstract. The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique) were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. The enrichments realized on the subsurface showed three types of responses. From 141° W (Marquesas plateau) to approx 125° W, bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (median of enhancement factor×39 in 24 h). Within the Gyre (125° W–95° W), nitrogen alone stimulated leucine incorporation rates (median×4.2), but rapidly labile carbon (glucose) became a second limiting factor (median×37) when the two elements were added. Finally from the border of the gyre to the Chilean upwelling (95° W–73° W), labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. Iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre. However 48 h enrichment experiments were not sufficient to show any clear limitation of heterotrophic bacteria within Marquesas plateau and showed a limitation of these organisms by labile carbon in the eastern border of the Gyre.

2007 ◽  
Vol 4 (5) ◽  
pp. 3799-3828 ◽  
Author(s):  
F. Van Wambeke ◽  
S. Bonnet ◽  
T. Moutin ◽  
P. Raimbault ◽  
G. Alarçon ◽  
...  

Abstract. The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique) were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. Longitudinally, the enrichments realized on the subsurface showed three types of responses. From the Marquesas plateau (8° W to approx 125° W), bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (43±24 times in 24 h). Within the Gyre (125° W–95° W), nitrogen alone stimulated leucine incorporation rates by a factor of 5.6±3.6, but rapidly labile carbon (glucose) became a second limiting factor (enhancement factor 49±32 when the two elements were added). Finally from the border of the gyre to the Chilean upwelling (95° W–73° W), labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. While iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre, heterotrophic bacteria were only limited by availability of labile DOC in those environments.


2009 ◽  
Vol 75 (10) ◽  
pp. 3216-3221 ◽  
Author(s):  
Alejandra Calvo-D�az ◽  
Xos� Anxelu G. Mor�n

ABSTRACT Leucine-to-carbon conversion factors (CFs) are needed for converting substrate incorporation into biomass production of heterotrophic bacteria. During 2006 we performed 20 dilution experiments for determining the spatiotemporal variability of empirical CFs in temperate Atlantic coastal waters. Values (0.49 to 1.92 kg C mol Leu−1) showed maxima in autumn to early winter and minima in summer. Spatially averaged CFs were significantly negatively correlated with in situ leucine incorporation rates (r = −0.91) and positively correlated with phosphate concentrations (r = 0.76). These relationships, together with a strong positive covariation between cell-specific leucine incorporation rates and carbon contents (r = 0.85), were interpreted as a strategy to maximize survival through protein synthesis and low growth rates under nutrient limitation (low CFs) until favorable conditions stimulate cell division relative to protein synthesis (high CFs). A multiple regression with in situ leucine incorporation rates and cellular carbon contents explained 96% of CF variance in our ecosystem, suggesting their potential prediction from more easily measurable routine variables. The use of the theoretical CF of 1.55 kg C mol Leu−1 would have resulted in a serious overestimation (73%) of annual bacterial production rates. Our results emphasize the need for considering the temporal scale in CFs for bacterial production studies.


2015 ◽  
Vol 12 (6) ◽  
pp. 1983-1992 ◽  
Author(s):  
I. Obernosterer ◽  
M. Fourquez ◽  
S. Blain

Abstract. It has been univocally shown that iron (Fe) is the primary limiting nutrient for phytoplankton metabolism in high-nutrient, low-chlorophyll (HNLC) waters, yet the question of how this trace metal affects heterotrophic microbial activity is far less understood. We investigated the role of Fe for bacterial heterotrophic production and growth at three contrasting sites in the naturally Fe-fertilized region east of the Kerguelen Islands and at one site in HNLC waters during the KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2) cruise in spring 2011. We performed dark incubations of natural microbial communities amended either with iron (Fe, as FeCl3) or carbon (C, as trace-metal clean glucose), or a combination of both, and followed bacterial abundance and heterotrophic production for up to 7 days. Our results show that single and combined additions of Fe and C stimulated bulk and cell-specific bacterial production at the Fe-fertilized sites, while in HNLC waters only combined additions resulted in significant increases in these parameters. Bacterial abundance was enhanced in two out of the three experiments performed in Fe-fertilized waters but did not respond to Fe or C additions in HNLC waters. Our results provide evidence that both Fe and C are present at limiting concentrations for bacterial heterotrophic activity in the naturally fertilized region off the Kerguelen Islands in spring, while bacteria were co-limited by these elements in HNLC waters. These results shed new light on the role of Fe in bacterial heterotrophic metabolism in regions of the Southern Ocean that receive variable Fe inputs.


1964 ◽  
Vol 15 (1) ◽  
pp. 73
Author(s):  
AD Brown

Viable counts were made of heterotrophic bacteria in seawater samples taken from 0, 25, 50, 75, and 100 m at one station off Sydney over a period of 2 years. Populations, which fell largely within the range of 10-1000/ml, tended to be higher in spring and early summer than at other times. Some evidence was obtained of a negative correlation between bacterial population and chlorinity. There was no evidence of a correlation between bacterial populations and several other variables which were examined. A (presumed) species of Chromobacterium occurred intermittently at the lower depths with some suggestion of a correlation with season and total bacterial count.


1998 ◽  
Vol 64 (11) ◽  
pp. 4433-4438 ◽  
Author(s):  
Fitri Fegatella ◽  
Julianne Lim ◽  
Staffan Kjelleberg ◽  
Ricardo Cavicchioli

ABSTRACT Sphingomonas sp. strain RB2256 is a representative of the dominant class of ultramicrobacteria that are present in marine oligotrophic waters. In this study we examined the rRNA copy number and ribosome content of RB2256 to identify factors that may be associated with the relatively low rate of growth exhibited by the organism. It was found that RB2256 contains a single copy of the rRNA operon, in contrast to Vibrio spp., which contain more than eight copies. The maximum number of ribosomes per cell was observed during mid-log phase; however, this maximum content was low compared to those of faster-growing, heterotrophic bacteria (approximately 8% of the maximum ribosome content of Escherichia coli with a growth rate of 1.5 h−1). The low number of ribosomes per cell appears to correlate with the low rate of growth (0.16 to 0.18 h−1) and the presence of a single copy of the rRNA operon. However, on the basis of cell volume, RB2256 appears to have a higher concentration of ribosomes than E. coli (approximately double that of E. coli with a growth rate of 1.5 h−1). Ribosome numbers reached maximum levels during mid-log-phase growth but decreased rapidly to 10% of maximum during late log phase through 7 days of starvation. The cells in late log phase and at the onset of starvation displayed an immediate response to a sudden addition of excess glucose (3 mM). This result demonstrates that a ribosome content 10% of maximum is sufficient to allow cells to immediately respond to nutrient upshift and achieve maximum rates of growth. These data indicate that the bulk of the ribosome pool is not required for protein synthesis and that ribosomes are not the limiting factor contributing to a low rate of growth. Our findings show that the regulation of ribosome content, the number of ribosomes per cell, and growth rate responses in RB2256 are fundamentally different from those characteristics in fast-growing heterotrophs like E. coliand that they may be characteristics typical of oligotrophic ultramicrobacteria.


2007 ◽  
Vol 4 (4) ◽  
pp. 2761-2791 ◽  
Author(s):  
F. Van Wambeke ◽  
I. Obernosterer ◽  
T. Moutin ◽  
S. Duhamel ◽  
O. Ulloa ◽  
...  

Abstract. Spatial variations of heterotrophic bacterial production and phytoplankton primary production were investigated across South East Pacific Ocean (–141° W, –8° S to –72° W, –35° S) in November–December 2004. Bacterial production (³H leucine incorporation) integrated over the euphotic zone encompassed a wide range of values, from 43 mg C m−2 d−1 in the hyper-oligotrophic South Pacific Gyre to 392 mg C m−2 d−1 in the upwelling off Chile. Within the gyre (120° W, 22° S) records of low phytoplankton biomass (7 mg TChla m−2) were obtained and in situ 14C based particulate primary production rates were as low as 153 mg C m−2 d−1, thus equal to the value considered as a limit for primary production under strong oligotrophic conditions. In the South Pacific gyre average rates of ³H leucine incorporation rates, and leucine incorporation rates per cell (5–21 pmol L−1 h−1 and 15–56×10−21 mol cell−1 h−1, respectively), were in the same range as those reported for other oligotrophic sub tropical and temperate waters. Rates of dark community respiration, determined at selected stations across the transect varied in a narrow range (42–97 mmol O2 m−2 d−1), except for one station in the upwelling off Chile (245 mmol O2 m−2 d−1). Bacterial growth efficiencies varied between 5 and 38% and bacterial carbon demand largely exceeded 14C particulate primary production across the South Pacific Ocean. Net community production also revealed negative values in the South Pacific Gyre (–13±20 to –37±40 mmol O2 m−2 d−1). Such imbalances being impossible in this area far from any external input, we discuss the techniques involved for determining the coupling between primary production and bacterial heterotrophic production.


2018 ◽  
Author(s):  
Scott R. Grant ◽  
Matthew J. Church ◽  
Sara Ferrón ◽  
Edward A. Laws ◽  
Michael S. Rappé

AbstractIn this study, a strain of SAR11 subgroup IIIa (termed HIMB114) isolated from the tropical Pacific Ocean was grown in seawater-based batch and continuous culture in order to quantify cellular features and metabolism relevant to SAR11 ecology. We report the first direct measurements of cellular elemental quotas for nitrogen (N) and phosphorus (P) for SAR11: 1.4 ± 0.9 fg N and 0.44 ± 0.01 fg P, respectively, that were consistent with the small size of HIMB114 cells (average volume of 0.09 µm3). However, the mean carbon (C) cellular quota of 50 ± 47 fg C was anomalously high, but variable. Rates of phosphate (PO43-) uptake measured from both batch and continuous cultures were exceptionally slow: in chemostats growing at 0.3 d−1, HIMB114 took up 1.1 ± 0.3 amol P cell−1d−1, suggesting that <30% of the cellular P requirement of HIMB114 was met by PO43-assimilation. The mean rate of leucine incorporation, a measure of bacterial production, during late log phase growth of batch HIMB114 cultures was 0.042 ± 0.02 amol Leu cell−1h−1. While only weakly correlated with changes in specific growth rates, the onset of stationary phase resulted in decreases in cell-specific leucine incorporation that were proportional to changes in growth rate. Rates of cellular production, respiratory oxygen consumption, and changes in total organic C concentrations constrained cellular growth efficiencies to 13 ± 4%. Hence, despite the small, streamlined genome and diminutively sized cells, SAR11 strain HIMB114 appears to grow at efficiencies similar to naturally occurring bacterioplankton communities.ImportanceWhile SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either been only hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, C, aerobic respiration and bacterial production for a SAR11 strain growing in natural seawater media that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of non-limiting PO43-concentrations.


Sign in / Sign up

Export Citation Format

Share Document