scholarly journals Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

2011 ◽  
Vol 8 (9) ◽  
pp. 2665-2688 ◽  
Author(s):  
M. Chen ◽  
Q. Zhuang ◽  
D. R. Cook ◽  
R. Coulter ◽  
M. Pekour ◽  
...  

Abstract. Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP) varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

2011 ◽  
Vol 8 (2) ◽  
pp. 2721-2773 ◽  
Author(s):  
M. Chen ◽  
Q. Zhuang ◽  
D. R. Cook ◽  
R. Coulter ◽  
M. Pekour ◽  
...  

Abstract. Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the Gross Primary Production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05°×0.05° spatial resolution. We find that the new version of TEM generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and Net Primary Production (NPP) ranges from 3.81 to 4.38 Pg C yr−1 and Net Ecosystem Production (NEP) varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.


2012 ◽  
Vol 16 (5) ◽  
pp. 1-22 ◽  
Author(s):  
Min Chen ◽  
Qianlai Zhuang

Abstract The authors use a spatially explicit parameterization method and the Terrestrial Ecosystem Model (TEM) to quantify the carbon dynamics of forest ecosystems in the conterminous United States. Six key parameters that govern the rates of carbon and nitrogen dynamics in TEM are selected for calibration. Spatially explicit data for carbon and nitrogen pools and fluxes are used to calibrate the six key parameters to more adequately account for the spatial heterogeneity of ecosystems in estimating regional carbon dynamics. The authors find that a spatially explicit parameterization results in vastly different carbon exchange rates relative to a parameterization conducted for representative ecosystem sites. The new parameterization method estimates that the net ecosystem production (NEP), the annual gross primary production (GPP), and the net primary production (NPP) of the regional forest ecosystems are 61% (0.02 Pg C; 1 Pg = 1015 g) higher and 2% (0.11 Pg C) and 19% (0.45 Pg C) lower, respectively, than the values obtained using the traditional parameterization method for the period 1948–2000. The estimated vegetation carbon and soil organic carbon pool sizes are 51% (18.73 Pg C) lower and 29% (7.40 Pg C) higher. This study suggests that, to more adequately quantify regional carbon dynamics, spatial data for carbon and nitrogen pools and fluxes should be developed and used with the spatially explicit parameterization method.


2020 ◽  
Author(s):  
Jiawen Zhu ◽  
Minghua Zhang ◽  
Yao Zhang ◽  
Xiaodong Zeng ◽  
Xiangming Xiao

<p>The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.</p>


2013 ◽  
Vol 748 ◽  
pp. 1176-1179
Author(s):  
Si Zhang ◽  
Chun Mei Xiong

Terrestrial ecosystems as the most important type of ecological system provide humanity with a main part of the living environment, food and clothing. However, many of ecological environmental have been severely damaged by human beings irrational activities, such as mining, deforestation, excavation herbs, etc. Faced with ecological and environmental protection pressure, its urgent to carry out ecological restoration projects according to the local conditions. Remote sensing technology is widely used in terrestrial ecosystems restoration because of its objectivity, real-timing, accuracy, covering a wide area and other unique advantages. This article discusses the restoration of terrestrial ecosystems based on remote sensing technology. At last, it analyses development trends of this research area.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Miao Zhang ◽  
Xing Yuan ◽  
Jason A. Otkin

Abstract Background Flash drought poses a great threat to terrestrial ecosystems and influences carbon dynamics due to its unusually rapid onset and increasing frequency in a warming climate. Understanding the response of regional terrestrial carbon dynamics to flash drought requires long-term observations of carbon fluxes and soil moisture at a large scale. Here, MODIS satellite observations of ecosystem productivity and ERA5 reanalysis modeling of soil moisture are used to detect the response of ecosystems to flash drought over China. Results The results show that GPP, NPP, and LAI respond to 79–86% of the flash drought events over China, with highest and lowest response frequency for NPP and LAI, respectively. The discrepancies in the response of GPP, NPP, and LAI to flash drought result from vegetation physiological and structural changes. The negative anomalies of GPP, NPP, and LAI occur within 19 days after the start of flash drought, with the fastest response occurring over North China, and slower responses in southern and northeastern China. Water use efficiency (WUE) is increased in most regions of China except for western regions during flash drought, illustrating the resilience of ecosystems to rapid changes in soil moisture conditions. Conclusions This study shows the rapid response of ecosystems to flash drought based on remote-sensing observations, especially for northern China with semiarid climates. Besides, NPP is more sensitive than GPP and LAI to flash drought under the influence of vegetation respiration and physiological regulations. Although the mean WUE increases during flash drought over most of China, western China shows less resilience to flash drought with little changes in WUE during the recovery stage. This study highlights the impacts of flash drought on ecosystems and the necessity to monitor rapid drought intensification.


2015 ◽  
Vol 19 (16) ◽  
pp. 1-21 ◽  
Author(s):  
Chang Liao ◽  
Qianlai Zhuang

Abstract Droughts dramatically affect plant production of global terrestrial ecosystems. To date, quantification of this impact remains a challenge because of the complex plant physiological and biochemical processes associated with drought. Here, this study incorporates a drought index into an existing process-based terrestrial ecosystem model to estimate the drought impact on global plant production for the period 2001–10. Global Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) data products are used to constrain model parameters and verify the model algorithms. The verified model is then applied to evaluate the drought impact. The study indicates that droughts will reduce GPP by 9.8 g C m−2 month−1 during the study period. On average, drought reduces GPP by 10% globally. As a result, the global GPP decreased from 106.4 to 95.9 Pg C yr−1 while the global net primary production (NPP) decreased from 54.9 to 49.9 Pg C yr−1. This study revises the estimation of the global NPP and suggests that the future quantification of the global carbon budget of terrestrial ecosystems should take the drought impact into account.


2018 ◽  
Vol 10 (9) ◽  
pp. 1329 ◽  
Author(s):  
Shangrong Lin ◽  
Jing Li ◽  
Qinhuo Liu ◽  
Alfredo Huete ◽  
Longhui Li

Gross primary production (GPP) in forests is the most important carbon flux in terrestrial ecosystems. Forest ecosystems with high leaf area index (LAI) values have diverse species or complex forest structures with vertical stratifications that influence the carbon–water–energy cycles. In this study, we used three light use efficiency (LUE) GPP models and site-level experiment data to analyze the effects of the vertical stratification of dense forest vegetation on the estimates of remotely sensed GPP during the growing season of two forest sites in East Asia: Dinghushan (DHS) and Tomakomai (TMK). The results showed that different controlling environmental factors of the vertical layers, such as temperature and vapor pressure deficit (VPD), produce different responses for the same LUE value in the different sub-ecosystems (defined as the tree, shrub, and grass layers), which influences the GPP estimation. Air temperature and VPD play important roles in the effects of vertical stratification on the GPP estimates in dense forests, which led to differences in GPP uncertainties from −50% to 30% because of the distinct temperature responses in TMK. The unequal vertical LAI distributions in the different sub-ecosystems led to GPP variations of 1–2 gC/m2/day with uncertainties of approximately −30% to 20% because sub-ecosystems have unique absorbed fractions of photosynthetically active radiation (APAR) and LUE. A comparison with the flux tower-based GPP data indicated that the GPP estimations from the LUE and APAR values from separate vertical layers exhibited better model performance than those calculated using the single-layer method, with 10% less bias in DHS and more than 70% less bias in TMK. The precision of the estimated GPP in regions with thick understory vegetation could be effectively improved by considering the vertical variations in environmental parameters and the LAI values of different sub-ecosystems as separate factors when calculating the GPP of different components. Our results provide useful insight that can be used to improve the accuracy of remote sensing GPP estimations by considering vertical stratification parameters along with the LAI of sub-ecosystems in dense forests.


2020 ◽  
Author(s):  
Milan Flach ◽  
Alexander Brenning ◽  
Fabian Gans ◽  
Markus Reichstein ◽  
Sebastian Sippel ◽  
...  

Abstract. Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the duration, timing and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross primary production (GPP), i.e. the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts. However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in-situ land CO2 flux observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests, if considered globally, appear not in general to be particularly sensitive to droughts and heat events that occurred during the analyzed period or even show increased GPP values during these events. On the one hand, this is in many cases plausible, e.g. when no negative preconditioning has occurred. On the other hand, however, this may also reflect a lack of sensitivity in current remote sensing derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document