scholarly journals Impacts of physical data assimilation on the Global Ocean Carbonate System

2014 ◽  
Vol 11 (4) ◽  
pp. 5399-5441 ◽  
Author(s):  
L. Visinelli ◽  
S. Masina ◽  
M. Vichi ◽  
A. Storto

Abstract. Prognostic simulations of ocean carbon distribution are largely dependent on an adequate representation of physical dynamics. In this work we show that the assimilation of temperature and salinity in a coupled ocean-biogeochemical model significantly improves the reconstruction of the carbonate system variables over the last two decades. For this purpose, we use the NEMO ocean global circulation model, coupled to the Biogeochemical Flux Model (BFM) in the global PELAGOS configuration. The assimilation of temperature and salinity is included into the coupled ocean-biogeochemical model by using a variational assimilation method. The use of ocean physics data assimilation improves the simulation of alkalinity and dissolved organic carbon against the control run as assessed by comparing with independent time series and gridded datasets. At the global scale, the effects of the assimilation of physical variables in the simulation of pCO2 improves the seasonal cycle in all basins, getting closer to the SOCAT estimates. Biases in the partial pressure of CO2 with respect to data that are evident in the control run are reduced once the physical data assimilation is used. The root mean squared errors in the pCO2 are reduced by up to 30% depending on the ocean basin considered. In addition, we quantify the relative contribution of biological carbon uptake on surface pCO2 by performing another simulation in which biology is neglected in the assimilated run.

2020 ◽  
Author(s):  
Julien Lamouroux ◽  
Alexandre Mignot ◽  
Coralie Perruche ◽  
Giovanni Ruggiero ◽  
Julien Paul ◽  
...  

<p>The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service (hereafter CMEMS). In that framework, Mercator Ocean International is in charge of improving the realism of its global 1⁄4° coupled physical-biogeochemical simulations, analyses and re‐analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, including, amongst others, the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions.<br><br>In that framework, Mercator Ocean International has successfully updated its global biogeochemical analysis and forecasting system with an Ocean Color data assimilation capability. In this system, successfully commissioned in September 2019, the biogeochemical model (NEMO/PISCES) is offline coupled with the dynamical ocean (1/12° coarsened to 1/4° resolution) from the CMEMS global physical analysis and forecasting operational system (PSY4), at a daily frequency, and benefits from the assimilation of satellite (SSH-SST-SIC) and in situ physical data. Nevertheless, a biogeochemical climatological damping is activated in the biogeochemical model in order to mitigate the impact of some misconstrained processes (vertical velocities) from this physical data-assimilated forcing (under investigation). The dedicated assimilation of biogeochemical data relies on a simplified version of the SEEK filter, where the forecast error covariances are built from a fixed-basis - but seasonally variable - ensemble of anomalies computed from a multi-year numerical experiment (without biogeochemical data assimilation) with respect to a running mean. Regarding Ocean Colour observations, the system relies, as a first step, on the CMEMS Global Ocean surface chlorophyll concentration products, delivered in NRT.<br><br>The objective of this presentation is thus to provide (1) a short description of the implementation of the aforementioned data assimilation methodology in the forecasting system; (2) a synthesis of the assessment of this global biogeochemical forecasting system, by cross-comparing the assimilated solution with various datasets, both spatial (Ocean Colour) and in situ (BGC-Argo, GLODAP), and (3) a synthetic overview of the impact/benefit of the assimilation of the Ocean Colour data.</p>


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2021 ◽  
pp. 50-66
Author(s):  
V. N. Stepanov ◽  
◽  
Yu. D. Resnyanskii ◽  
B. S. Strukov ◽  
A. A. Zelen’ko ◽  
...  

The quality of simulation of model fields is analyzed depending on the assimilation of various types of data using the PDAF software product assimilating synthetic data into the NEMO global ocean model. Several numerical experiments are performed to simulate the ocean–sea ice system. Initially, free model was run with different values of the coefficients of horizontal turbulent viscosity and diffusion, but with the same atmospheric forcing. The model output obtained with higher values of these coefficients was used to determine the first guess fields in subsequent experiments with data assimilation, while the model results with lower values of the coefficients were assumed to be true states, and a part of these results was used as synthetic observations. The results are analyzed that are assimilation of various types of observational data using the Kalman filter included through the PDAF to the NEMO model with real bottom topography. It is shown that a degree of improving model fields in the process of data assimilation is highly dependent on the structure of data at the input of the assimilation procedure.


2014 ◽  
Vol 7 (9) ◽  
pp. 9095-9135 ◽  
Author(s):  
S. J. Sutanto ◽  
G. Hoffmann ◽  
R. A. Scheepmaker ◽  
J. Worden ◽  
S. Houweling ◽  
...  

Abstract. Over the last-decade, global scale datasets of atmospheric water vapor isotopologues (HDO) have become available from different remote-sensing instruments. Due to the observational geometry and the spectral ranges that are used, only few satellites sample water isotopologues in the lower troposphere, where the bulk of hydrological processes within the atmosphere take place. Here, we compare three satellite HDO datasets, two from the Tropospheric Emission Spectrometer (TES retrieval version 4 and 5) and one from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), with results from the atmospheric global circulation model ECHAM4 (European Center HAMburg 4). We examine a list of known isotopologue effects to qualitatively benchmark the various observational datasets. TES version 5 (TESV5), TES version 4 (TESV4), SCIAMACHY, ECHAM, and ECHAM convoluted with averaging kernel of TES version 5 (ECHAMAK5) successfully reproduced a number of established isotopologue effects such as the latitude effect, the amount effect, and the continental effect, but to different extent. The improvement of TES version 5 over version 4 was confirmed by the steeper latitudinal gradient at higher latitudes in agreement with SCIAMACHY. Other features of the water isotopologue cycle such as the seasonally varying signal in the tropics due to the movement of the Inter Tropical Convergence Zone (ICTZ) are captured in TESV5 and SCIAMACHY. We suggest that the qualitative and quantitative tests carried out in this study could become benchmark tests for evaluation of future satellite isotopologue datasets.


2016 ◽  
Author(s):  
Olivier Aumont ◽  
Marco van Hulten ◽  
Matthieu Roy-Barman ◽  
Jean-Claude Dutay ◽  
Christian Ethé ◽  
...  

Abstract. The marine biological carbon pump is dominated by the vertical transfer of Particulate Organic Carbon (POC) from the surface ocean to its interior. The efficiency of this transfer plays an important role in controlling the amount of atmospheric carbon that is sequestered in the ocean. Furthermore, the abundance and composition of POC is critical for the removal of numerous trace elements by scavenging, a number of which such as iron are essential for the growth of marine organisms, including phytoplankton. Observations and laboratory experiments have shown that POC is composed of numerous organic compounds that can have very different reactivities. Yet, this variable reactivity of POC has never been extensively considered, especially in modeling studies. Here, we introduced in the global ocean biogeochemical model NEMO-PISCES a description of the variable composition of POC based on the theoretical Reactivity Continuum Model proposed by (Boudreau and Ruddick, 1991). Our model experiments show that accounting for a variable lability of POC increases POC concentrations in the ocean’s interior by one to two orders of magnitude. This increase is mainly the consequence of a better preservation of small particles that sink slowly from the surface. Comparison with observations is significantly improved both in abundance and in size distribution. Furthermore, the amount of carbon that reaches the sediments is increased by more than a factor of two, which is in better agreement with global estimates of the sediment oxygen demand. The impact on the major macro-nutrients (nitrate and phosphate) remains modest. However, iron (Fe) distribution is strongly altered, especially in the upper mesopelagic zone as a result of more intense scavenging: Vertical gradients in Fe are milder in the upper ocean which appears to be closer to observations. Thus, our study shows that the variable lability of POC can play a critical role in the marine biogeochemical cycles which advocates for more dedicated in situ and laboratory experiments.


2006 ◽  
Vol 3 (4) ◽  
pp. 1011-1063
Author(s):  
Z. Lachkar ◽  
J. C. Orr ◽  
J.-C. Dutay ◽  
P. Delecluse

Abstract. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of transient tracers. We made global anthropogenic transient-tracer simulations in non-eddying (2°cosφ×2°, ORCA2) and eddying (½°cosφ×½°, ORCA05) versions of the ocean general circulation model OPA9. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on global and regional bomb Δ14C uptake and storage. Yet for anthropogenic CO2 and CFC-11, increased eddy activity reduces southern extratropical uptake by 28% and 25% respectively. There is a similar decrease in corresponding inventories, which provides better agreement with observations. With higher resolution, eddies strengthen upper ocean vertical stratification and reduce excessive ventilation of intermediate waters by 20% between 60° S and 40° S. By weakening the Residual Circulation, i.e., the sum of Eulerian mean flow and the opposed eddy-induced flow, eddies reduce the supply of tracer-impoverished deep waters to the surface near the Antarctic divergence, thus reducing the air-sea tracer flux. Consequently, inventories for both CFC-11 and anthropogenic CO2 decrease because their mixed layer concentrations in that region equilibrate with the atmosphere on relatively short time scales (15 days and 6 months, respectively); conversely, the slow air-sea equilibration of bomb Δ14C of 6 years, gives surface waters little time to exchange with the atmosphere before they are subducted.


2021 ◽  
Vol 18 (4) ◽  
pp. 1291-1320
Author(s):  
Rebecca M. Wright ◽  
Corinne Le Quéré ◽  
Erik Buitenhuis ◽  
Sophie Pitois ◽  
Mark J. Gibbons

Abstract. Jellyfish are increasingly recognised as important components of the marine ecosystem, yet their specific role is poorly defined compared to that of other zooplankton groups. This paper presents the first global ocean biogeochemical model that includes an explicit representation of jellyfish and uses the model to gain insight into the influence of jellyfish on the plankton community. The Plankton Type Ocean Model (PlankTOM11) model groups organisms into plankton functional types (PFTs). The jellyfish PFT is parameterised here based on our synthesis of observations on jellyfish growth, grazing, respiration and mortality rates as functions of temperature and jellyfish biomass. The distribution of jellyfish is unique compared to that of other PFTs in the model. The jellyfish global biomass of 0.13 PgC is within the observational range and comparable to the biomass of other zooplankton and phytoplankton PFTs. The introduction of jellyfish in the model has a large direct influence on the crustacean macrozooplankton PFT and influences indirectly the rest of the plankton ecosystem through trophic cascades. The zooplankton community in PlankTOM11 is highly sensitive to the jellyfish mortality rate, with jellyfish increasingly dominating the zooplankton community as its mortality diminishes. Overall, the results suggest that jellyfish play an important role in regulating global marine plankton ecosystems across plankton community structure, spatio-temporal dynamics and biomass, which is a role that has been generally neglected so far.


2016 ◽  
Author(s):  
Inti Pelupessy ◽  
Ben van Werkhoven ◽  
Arjen van Elteren ◽  
Jan Viebahn ◽  
Adam Candy ◽  
...  

Abstract. In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). This framework aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, OMUSE facilitates the design of numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales. Rapid development of simulation models is made possible through the creation of simple high-level scripts, with the low-level core part of the abstraction designed to deploy these simulations efficiently on heterogeneous high performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver, to the global circulation model POP. We discuss the types of the couplings that can be implemented using OMUSE and present example applications, that demonstrate the efficient and relatively straightforward model initialisation and coupling within OMUSE. These also include the concurrent use of data analysis tools on a running model. We also give examples of multi-scale and multi-physics simulations by embedding a regional ocean model into a global ocean model, and in coupling a surface wave propagation model with a coastal circulation model.


2013 ◽  
Vol 10 (12) ◽  
pp. 8401-8422 ◽  
Author(s):  
I. Kriest ◽  
A. Oschlies

Abstract. Although of substantial importance for marine tracer distributions and eventually global carbon, oxygen, and nitrogen fluxes, the interaction between sinking and remineralization of organic matter, benthic fluxes and burial is not always represented consistently in global biogeochemical models. We here aim to investigate the relationships between these processes with a suite of global biogeochemical models, each simulated over millennia, and compared against observed distributions of pelagic tracers and benthic and pelagic fluxes. We concentrate on the representation of sediment–water interactions in common numerical models, and investigate their potential impact on simulated global sediment–water fluxes and nutrient and oxygen distributions. We find that model configurations with benthic burial simulate global oxygen well over a wide range of possible sinking flux parameterizations, making the model more robust with regard to uncertainties about the remineralization length scale. On a global scale, burial mostly affects oxygen in the meso- to bathypelagic zone. While all model types show an almost identical fit to observed pelagic particle flux, and the same sensitivity to particle sinking speed, comparison to observational estimates of benthic fluxes reveals a more complex pattern, but definite interpretation is not straightforward because of heterogeneous data distribution and methodology. Still, evaluating model results against observed pelagic and benthic fluxes of organic matter can complement model assessments based on more traditional tracers such as nutrients or oxygen. Based on a combined metric of dissolved tracers and biogeochemical fluxes, we here identify two model descriptions of burial as suitable candidates for further experiments and eventual model refinements.


Sign in / Sign up

Export Citation Format

Share Document