scholarly journals The fractionation of nitrogen and oxygen isotopes in macroalgae during the assimilation of nitrate

2014 ◽  
Vol 11 (5) ◽  
pp. 6909-6943 ◽  
Author(s):  
P. K. Swart ◽  
S. Evans ◽  
T. Capo ◽  
M. A. Altabet

Abstract. In order to determine and understand the stable isotope fractionation of 18O and 15N manifested during assimilation of NO3− in marine macro-benthic algae, two species (Ulva sp. and Agardhiella sp.) have been grown in a wide range of NO3- concentrations (2–500 μM). Two types of experiments were performed. The first was one in which the concentration of the NO3− was allowed to drift downward as it was assimilated by the algae, between 24 h replacements of media. These experiments proceeded for periods of between seven and ten days. A second set of experiments maintained the NO3− concentration at a low steady state value by means of a syringe pump. The effective fractionation during the assimilation of the NO3− was determined by measuring the δ15N of both the (i) new algal growth, and (ii) residual NO3− in the free drift experiments after 0, 12, 24, and 48 h. Fitting models to these data show that the fractionation during assimilation is dependent upon the concentration of NO3− and is effectively zero at concentrations of less than 1 μM. The change in the fractionation with respect to concentration is the greatest at lower concentrations (1–10 μM). The fractionation determined using the δ15N of the NO3− or the solid algal material provided statistically the same result. Therefore, at typical marine concentrations of NO3−, fractionation during assimilation can probably be considered to be negligible. Although the δ18O and δ15N of NO3− in the residual solution were correlated, the slope of the relationship varied with NO3− concentration, with slopes of greater than unity at low concentration. These results suggest shifts in the dominant fractionation mechanism between 1 and 10 μM NO3−. At typical marine concentrations of NO3−, fractionation during assimilation can be considered to be negligible. However, at higher concentrations, fractionation during assimilation will lead to both δ15N values for algal biomass lower than the NO3− source, but also 15N enrichments in the residual NO3−.

2014 ◽  
Vol 11 (21) ◽  
pp. 6147-6157 ◽  
Author(s):  
P. K. Swart ◽  
S. Evans ◽  
T. Capo ◽  
M. A. Altabet

Abstract. In order to determine and understand the stable isotope fractionation of 18O and 15N manifested during assimilation of NO3− in marine macro-benthic algae, two species (Ulva sp. and Agardhiella sp.) have been grown in a wide range of NO3− concentrations (2–500 μM). Two types of experiments were performed. The first was one in which the concentration of the NO3− was allowed to drift downward as it was assimilated by the algae, between 24 hour replacements of media. These experiments proceeded for periods of between 7 and 10 days. A second set of experiments maintained the NO3− concentration at a low steady-state value by means of a syringe pump. The effective fractionation during the assimilation of the NO3− was determined by measuring the δ15N of both the (i) new algal growth and (ii) residual NO3− in the free-drift experiments after 0, 12, 24 and 48 h. Modelling these data show that the fractionation during assimilation is dependent upon the concentration of NO3− and is effectively 0 at concentrations of less than ~2 μM. The change in the fractionation with respect to concentration is the greatest at lower concentrations (2–10 μM). The fractionation stablizes between 4 and 6‰ at concentrations of between 50 and 500 μM. Although the δ18O and δ15N values of NO3− in the residual solution were correlated, the slope of relationship also varied with respect to NO3− concentration, with slopes of greater than unity at low concentration. These results suggest shifts in the dominant fractionation mechanism of 15N and 18O between concentrations of 1 and 10 μM NO3−. At higher NO3− concentrations (>10–50 μM), fractionation during assimilation will lead to δ15N values in algal biomass lower than the ambient NO3− and 15N enrichments in the residual NO3−.


2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


Author(s):  
Andrew Clarke

Temperature is that property of a body which determines whether it gains or loses energy in a particular environment. In classical thermodynamics temperature is defined by the relationship between energy and entropy. Temperature can be defined only for a body that is in thermodynamic and thermal equilibrium; whilst organisms do not conform to these criteria, the errors in assuming that they do are generally small. The Celsius and Fahrenheit temperature scales are arbitrary because they require two fixed points, one to define the zero and the other to set the scale. The thermodynamic (absolute) scale of temperature has a natural zero (absolute zero) and is defined by the triple point of water. Its unit of temperature is the Kelvin. The Celsius scale is convenient for much ecological and physiological work, but where temperature is included in statistical or deterministic models, only thermodynamic temperature should be used. Past temperatures can only be reconstructed with the use of proxies, the most important of which are based on isotope fractionation.


2021 ◽  
Author(s):  
Andrea Watzinger ◽  
Melanie Hager ◽  
Thomas Reichenauer ◽  
Gerhard Soja ◽  
Paul Kinner

AbstractMaintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g−1 day−1) than in the expanded clay (1.0 µg CO2 g−1 day−1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072–1.500) and apparent decane biodegradation rates (k = − 0.017 to − 0.067 day−1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-79
Author(s):  
Colin S. Gordon

Effect systems are lightweight extensions to type systems that can verify a wide range of important properties with modest developer burden. But our general understanding of effect systems is limited primarily to systems where the order of effects is irrelevant. Understanding such systems in terms of a semilattice of effects grounds understanding of the essential issues and provides guidance when designing new effect systems. By contrast, sequential effect systems—where the order of effects is important—lack an established algebraic structure on effects. We present an abstract polymorphic effect system parameterized by an effect quantale—an algebraic structure with well-defined properties that can model the effects of a range of existing sequential effect systems. We define effect quantales, derive useful properties, and show how they cleanly model a variety of known sequential effect systems. We show that for most effect quantales, there is an induced notion of iterating a sequential effect; that for systems we consider the derived iteration agrees with the manually designed iteration operators in prior work; and that this induced notion of iteration is as precise as possible when defined. We also position effect quantales with respect to work on categorical semantics for sequential effect systems, clarifying the distinctions between these systems and our own in the course of giving a thorough survey of these frameworks. Our derived iteration construct should generalize to these semantic structures, addressing limitations of that work. Finally, we consider the relationship between sequential effects and Kleene Algebras, where the latter may be used as instances of the former.


2021 ◽  
pp. 1-8
Author(s):  
Paul Theo Zebhauser ◽  
Achim Berthele ◽  
Marie-Sophie Franz ◽  
Oliver Goldhardt ◽  
Janine Diehl-Schmid ◽  
...  

Background: Tau proteins are established biomarkers of neuroaxonal damage in a wide range of neurodegenerative conditions. Although measurement of total-Tau in the cerebrospinal fluid is widely used in research and clinical settings, the relationship between age and total-Tau in the cerebrospinal fluid is yet to be fully understood. While past studies reported a correlation between age and total-Tau in the cerebrospinal fluid of healthy adults, in clinical practice the same cut-off value is used independently of patient’s age. Objective: To further explore the relationship between age and total-Tau and to disentangle neurodegenerative from drainage-dependent effects. Methods: We analyzed cerebrospinal fluid samples of 76 carefully selected cognitively healthy adults and included amyloid-β 1–40 as a potential marker of drainage from the brain’s interstitial system. Results: We found a significant correlation of total-Tau and age, which was no longer present when correcting total-Tau for amyloid-β 1–40 concentrations. These findings were replicated under varied inclusion criteria. Conclusion: Results call into question the association of age and total-Tau in the cerebrospinal fluid. Furthermore, they suggest diagnostic utility of amyloid-β 1–40 as a possible proxy for drainage-mechanisms into the cerebrospinal fluid when interpreting biomarker concentrations for neurodegenerative diseases.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


2015 ◽  
Vol 19 (5) ◽  
pp. 488-530
Author(s):  
Cynthia Fowler

This article examines the Religious Art of Today exhibition, originally held in 1944 at Boston’s Institute of Modern Art and then reformulated for the Dayton Art Institute in Ohio. The exhibition was eclectic in that it included a wide range of artists and a diversity of faiths, and engaged the debate held among museum professionals about the relationship between religion and modern art. The article focuses closely on Catholic, Jewish, and Navajo art included in the exhibition. The IMA’s commitment to the figurative tradition afforded artists the opportunity to explore their identities—as Jews, as Catholics, as Navajos—using recognizable religious subjects. That the works in the exhibition were selected as representative of modern art resulted in a convergence of discourses related to modern art with those of religious/cultural identity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3888
Author(s):  
Boon-Peng Puah ◽  
Juriyati Jalil ◽  
Ali Attiq ◽  
Yusof Kamisah

Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.


2020 ◽  
Vol 12 (9) ◽  
pp. 3668 ◽  
Author(s):  
Rakan Alyamani ◽  
Suzanna Long ◽  
Mohammad Nurunnabi

With the increase in awareness about the wide range of issues and adverse effects associated with the use of conventional energy sources came an increase in project management research related to sustainability and sustainable development. Part of that research is devoted to the development of sustainable project typologies that classify projects based on a variety of external factors that can significantly impact these projects. This research focuses on developing a sustainable project typology that classifies sustainable projects based on the external institutional influences. The typology explores the influence of the coercive, normative, and mimetic institutional isomorphisms on the expected level of change, level of uncertainty, project team skills and experience levels, and the level of technology information exchange in sustainable projects. Two case studies are presented to demonstrate the use of the typology to classify sustainable projects based on the external institutional influences.


Sign in / Sign up

Export Citation Format

Share Document