scholarly journals The role of photo- and thermal degradation for CO<sub>2</sub> and CO fluxes in an arid ecosystem

2015 ◽  
Vol 12 (3) ◽  
pp. 2429-2457 ◽  
Author(s):  
H. van Asperen ◽  
T. Warneke ◽  
S. Sabbatini ◽  
G. Nicolini ◽  
D. Papale ◽  
...  

Abstract. Recent studies have suggested the potential importance of abiotic degradation in arid ecosystems. In this study, the role of photo- and thermal degradation in ecosystem CO2 and CO exchange is assessed. A field experiment was performed in Italy using a FTIR-spectrometer coupled to a flux gradient system and to flux chambers. In a laboratory experiment, field samples were exposed to different temperatures and radiation intensities. No photodegradation-induced CO2 and CO fluxes were found in the field and in the laboratory study. In the laboratory, thermal degradation fluxes for CO2 and CO have been observed. In the field, CO uptake and emission have been observed and are proposed to be a result of biological uptake and abiotic thermal degradation-production. We suggest that previous studies, studying direct photodegradation, have overestimated the role of photodegradation and observed fluxes might be due to thermal degradation, which is an indirect effect of radiation. The potential importance of abiotic decompostion in the form of thermal degradation, especially for arid regions, should be considered in future studies.

2015 ◽  
Vol 12 (13) ◽  
pp. 4161-4174 ◽  
Author(s):  
H. van Asperen ◽  
T. Warneke ◽  
S. Sabbatini ◽  
G. Nicolini ◽  
D. Papale ◽  
...  

Abstract. Recent studies have suggested the potential importance of abiotic degradation in arid ecosystems. In this study, the role of photo- and thermal degradation in ecosystem CO2 and CO exchange is assessed. A field experiment was performed in Italy using an FTIR-spectrometer (Fourier Transform Infrared) coupled to a flux gradient system and to flux chambers. In a laboratory experiment, field samples were exposed to different temperatures and radiation intensities. No photodegradation-induced CO2 and CO fluxes of in literature suggested magnitudes were found in the field nor in the laboratory study. In the laboratory, we measured CO2 and CO fluxes that were derived from thermal degradation. In the field experiment, CO uptake and emission have been measured and are proposed to be a result of biological uptake and abiotic thermal degradation-production. We suggest that previous studies, addressing direct photodegradation, have overestimated the role of photodegradation and observed fluxes might be due to thermal degradation, which is an indirect effect of radiation. The potential importance of abiotic decomposition in the form of thermal degradation, especially for arid regions, should be considered in future studies.


2021 ◽  
Vol 349 ◽  
pp. 129174
Author(s):  
Huijia Mao ◽  
Zhijun Chen ◽  
Jie Li ◽  
Xueyang Zhai ◽  
Hongyan Li ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2021 ◽  
Vol 13 (6) ◽  
pp. 7476-7484
Author(s):  
Julita Smalc-Koziorowska ◽  
Ewa Grzanka ◽  
Artur Lachowski ◽  
Roman Hrytsak ◽  
Mikolaj Grabowski ◽  
...  

1979 ◽  
Vol 15 (4) ◽  
pp. 409-413 ◽  
Author(s):  
J. Zurakowska-Orszagh ◽  
T. Chreptowicz ◽  
A. Orzeszko ◽  
J. Kaminski

2010 ◽  
Vol 8 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh

AbstractIn this paper we focus on the elastic and thermodynamic properties of the B1 phase of CaO by using the modified TBP model, including the role of temperature. We have successfully obtained the phase transition pressure and volume change at different temperatures. In addition elastic constants and bulk modulus of B1 phase of CaO at different temperatures are discussed. Our results are comparable with the previous ones at high temperatures and pressures. The thermodynamical properties of the B1 phase of CaO are also predicted.


2018 ◽  
Vol 22 (2) ◽  
pp. 1629-1648 ◽  
Author(s):  
Etienne Bresciani ◽  
Roger H. Cranswick ◽  
Eddie W. Banks ◽  
Jordi Batlle-Aguilar ◽  
Peter G. Cook ◽  
...  

Abstract. Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.


2013 ◽  
Vol 1 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Ki Chang Kwon ◽  
Buem Joon Kim ◽  
Jong-Lam Lee ◽  
Soo Young Kim

Sign in / Sign up

Export Citation Format

Share Document