scholarly journals Subsidence and carbon loss in drained tropical peatlands: reducing uncertainty and implications for CO<sub>2</sub> emission reduction options

2011 ◽  
Vol 8 (5) ◽  
pp. 9311-9356 ◽  
Author(s):  
A. Hooijer ◽  
S. Page ◽  
J. Jauhiainen ◽  
W. A. Lee ◽  
X. X. Lu ◽  
...  

Abstract. Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 years after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 years, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. Bulk density profiles indicate that consolidation contributes only 7 % to total subsidence, in the first year after drainage, and that the role of compaction is also reduced quickly and becomes negligible after 5 years. Over 18 years after drainage, 92 % of cumulative subsidence was caused by peat oxidation. The average rate of carbon loss over the first 5 years was 178 t ha−1 yr−1 CO2eq, which reduced to 73 t ha−1 yr−1 CO2eq over subsequent years, resulting in an average loss of 100 t ha−1 yr−1 CO2eq annualized over 25 years. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water table levels theoretically possible in plantations. This implies that improved water management will reduce these impacts by only 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence should be accepted as inevitable consequences of conversion of forested tropical peatlands to other land uses.

2012 ◽  
Vol 9 (3) ◽  
pp. 1053-1071 ◽  
Author(s):  
A. Hooijer ◽  
S. Page ◽  
J. Jauhiainen ◽  
W. A. Lee ◽  
X. X. Lu ◽  
...  

Abstract. Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are inevitable consequences of conversion of forested tropical peatlands to other land uses.


2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Xi Li ◽  
Li Yan ◽  
Lijun Lu ◽  
Guoman Huang ◽  
Zheng Zhao ◽  
...  

Large-scale land subsidence has threatened the safety of the Hebei Plain in China. For tens of thousands of square kilometers of the Hebei Plain, large-scale subsidence monitoring is still one of the most difficult problems to be solved. In this paper, we employed the small baseline subset (SBAS) and NSBAS technique to monitor the land subsidence in the Hebei Plain (45,000 km2). The 166 Sentinel-1A data of adjacent-track 40 and 142 collected from May 2017 to May 2019 were used to generate the average deformation velocity and deformation time-series. A novel data fusion flow for the generation of land subsidence velocity of adjacent-track is presented and tested, named as the fusion of time-series interferometric synthetic aperture radar (TS-InSAR) results of adjacent-track using synthetic aperture radar amplitude images (FTASA). A cross-comparison analysis between the two tracks results and two TS-InSAR results was carried out. In addition, the deformation results were validated by leveling measurements and benchmarks on bedrock results, reaching a precision 9 mm/year. Twenty-six typical subsidence bowls were identified in Handan, Xingtai, Shijiazhuang, Hengshui, Cangzhou, and Baoding. An average annual subsidence velocity over −79 mm/year was observed in Gaoyang County of Baoding City. Through the cause analysis of the typical subsidence bowls, the results showed that the shallow and deep groundwater funnels, three different land use types over the building construction, industrial area, and dense residential area, and faults had high spatial correlation related to land subsidence bowls.


Author(s):  
Wei-Chia Hung ◽  
Yi-An Chen ◽  
Cheinway Hwang

Abstract. Over 1992–2018, groundwater overexploitation had caused large-scale land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The Taiwan High Speed Railway (THSR) passes through an area of severe subsidence in CRAF, and the subsidence poses a serious threat to its operation. How to effectively monitor land subsidence here has become a major issue in Taiwan. In this paper, we introduce a multiple-sensor monitoring system for land subsidence, including 50 continuous operation reference stations (CORS), multi temporal InSAR (MT-InSAR), a 1000 km levelling network, 34 multi-layer compaction monitoring wells and 116 groundwater monitoring wells. This system can monitor the extent of land subsidence and provide data for studying the mechanism of land subsidence. We use the Internet of Things (IoT) technology to control and manage the sensors and develop a bigdata processing procedure to analyse the monitoring data for the system of sensors. The procedure makes the land subsidence monitoring more efficient and intelligent.


2019 ◽  
Author(s):  
Symon Mezbahuddin ◽  
Tadas Nikonovas ◽  
Allan Spessa ◽  
Robert Grant ◽  
Muhammad Imron

2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Lei Zhao ◽  
Chunyan Qu ◽  
Dezheng Zhao ◽  
Xinjian Shan ◽  
Han Chen ◽  
...  

We use ALOS-2 and Sentinel-1 data spanning 2015-2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area of the co-seismic deformation field, with a maximum uplift of ~80mm within 4.5 yr after the mainshock. While in the southern coseismic uplift area, the direction of the post-seismic deformation is generally opposite to the co-seismic deformation. Additionally, two notable deformation areas are located in the region around 29°N, and near the MFT, respectively. Sentinel-1 observations reveal post-seismic uplift deformation on the north side of the co-seismic deformation field with an average rate of ~20 mm/yr in line-of-stght. The kinematic afterslip constrained by InSAR data shows that the frictional slip is distributed in both updip and downdip areas. The maximum cumulative afterslip is 0.35 m in downdip areas, and 0.2 m in the updip areas, constrained by the ALOS measurements. The stress-driven afterslip model shows that the afterslip is distributed in the downdip area with a maximum slip of 0.3m during the first year after the earthquake. Within the 4.5 years after the mainshock, the estimated moment released by afterslip is ~1.5174 × 1020 Nm,about 21.2% of that released by the main earthquake.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chris D. Evans ◽  
Nathan Callaghan ◽  
Adi Jaya ◽  
Alistair Grinham ◽  
Sofie Sjogersten ◽  
...  

Peatlands are highly dynamic systems, able to accumulate carbon over millennia under natural conditions, but susceptible to rapid subsidence and carbon loss when drained. Short-term, seasonal and long-term peat surface elevation changes are closely linked to key peatland attributes such as water table depth (WTD) and carbon balance, and may be measured remotely using satellite radar and LiDAR methods. However, field measurements of peat elevation change are spatially and temporally sparse, reliant on low-resolution manual subsidence pole measurements, or expensive sensor systems. Here we describe a novel, simple and low-cost image-based method for measuring peat surface motion and WTD using commercially available time-lapse cameras and image processing methods. Based on almost two years’ deployment of peat cameras across contrasting forested, burned, agricultural and oil palm plantation sites in Central Kalimantan, Indonesia, we show that the method can capture extremely high resolution (sub-mm) and high-frequency (sub-daily) changes in peat surface elevation over extended periods and under challenging environmental conditions. WTD measurements were of similar quality to commercially available pressure transducers. Results reveal dynamic peat elevation response to individual rain events, consistent with variations in WTD. Over the course of the relatively severe 2019 dry season, cameras in deep-drained peatlands recorded maximum peat shrinkage of over 8 cm, followed by partial rebound, leading to net annual subsidence of up to 5 cm. Sites with higher water tables, and where borehole irrigation was used to maintain soil moisture, had lower subsidence, suggesting potential to reduce subsidence through altered land-management. Given the established link between subsidence and CO2 emissions, these results have direct implications for the management of peatlands to reduce high current greenhouse gas (GHG) emissions. Camera-based sensors provide a simple, low-cost alternative to commercial elevation, WTD and GHG flux monitoring systems, suitable for deployment at scale, and in areas where existing approaches are impractical or unaffordable. If ground-based observations of peat motion can be linked to measured GHG fluxes and with satellite-based monitoring tools, this approach offers the potential for a large-scale peatland monitoring tool, suitable for identifying areas of active carbon loss, targeting climate change mitigation interventions, and evaluating intervention outcomes.


1980 ◽  
Vol 11 (3-4) ◽  
pp. 159-168 ◽  
Author(s):  
Henrik Kærgaard

In an earlier paper I have shown an example of how long term drawdowns can be used for the computation of long term storage in artesian and semiartesian areas. In most cases the long term storage is more or less equivalent to the specific yield at the water table; the storage mechanisms of consolidation playing a minor role in long term situations. The specific yield in artesian areas is a very important parameter in the prediction of long term effects of ground water withdrawal. Especially the stream depletion will often mainly be governed by draw-downs in upper nonpumped aquifers near the water table, and these drawdowns depend to a great extent on the specific yield at the water table. A determination of long term storage will often necessitate long term draw-down data, however, under certain circumstances a determination can be made on the basis of a pumping test of limited duration (3-5 weeks) provided drawdown observations at the water table can be made. In this paper some formulas dealing with water table drawdowns in different geohydrologic systems are reviewed, and two cases in which these formulas have been used in practice are presented.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 732
Author(s):  
Gusti Z. Anshari ◽  
Evi Gusmayanti ◽  
Nisa Novita

Drainage is a major means of the conversion of tropical peat forests into agriculture. Accordingly, drained peat becomes a large source of carbon. However, the amount of carbon (C) loss from drained peats is not simply measured. The current C loss estimate is usually based on a single proxy of the groundwater table, spatially and temporarily dynamic. The relation between groundwater table and C emission is commonly not linear because of the complex natures of heterotrophic carbon emission. Peatland drainage or lowering groundwater table provides plenty of oxygen into the upper layer of peat above the water table, where microbial activity becomes active. Consequently, lowering the water table escalates subsidence that causes physical changes of organic matter (OM) and carbon emission due to microbial oxidation. This paper reviews peat bulk density (BD), total organic carbon (TOC) content, and subsidence rate of tropical peat forest and drained peat. Data of BD, TOC, and subsidence were derived from published and unpublished sources. We found that BD is generally higher in the top surface layer in drained peat than in the undrained peat. TOC values in both drained and undrained are lower in the top and higher in the bottom layer. To estimate carbon emission from the top layer (0–50 cm) in drained peats, we use BD value 0.12 to 0.15 g cm−3, TOC value of 50%, and a 60% conservatively oxidative correction factor. The average peat subsidence is 3.9 cm yr−1. The range of subsidence rate per year is between 2 and 6 cm, which results in estimated emission between 30 and 90 t CO2e ha−1 yr−1. This estimate is comparable to those of other studies and Tier 1 emission factor of the 2013 IPCC GHG Inventory on Wetlands. We argue that subsidence is a practical approach to estimate carbon emission from drained tropical peat is more applicable than the use of groundwater table.


Sign in / Sign up

Export Citation Format

Share Document