scholarly journals Subsidence and carbon loss in drained tropical peatlands

2012 ◽  
Vol 9 (3) ◽  
pp. 1053-1071 ◽  
Author(s):  
A. Hooijer ◽  
S. Page ◽  
J. Jauhiainen ◽  
W. A. Lee ◽  
X. X. Lu ◽  
...  

Abstract. Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are inevitable consequences of conversion of forested tropical peatlands to other land uses.

2011 ◽  
Vol 8 (5) ◽  
pp. 9311-9356 ◽  
Author(s):  
A. Hooijer ◽  
S. Page ◽  
J. Jauhiainen ◽  
W. A. Lee ◽  
X. X. Lu ◽  
...  

Abstract. Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 years after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 years, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. Bulk density profiles indicate that consolidation contributes only 7 % to total subsidence, in the first year after drainage, and that the role of compaction is also reduced quickly and becomes negligible after 5 years. Over 18 years after drainage, 92 % of cumulative subsidence was caused by peat oxidation. The average rate of carbon loss over the first 5 years was 178 t ha−1 yr−1 CO2eq, which reduced to 73 t ha−1 yr−1 CO2eq over subsequent years, resulting in an average loss of 100 t ha−1 yr−1 CO2eq annualized over 25 years. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water table levels theoretically possible in plantations. This implies that improved water management will reduce these impacts by only 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence should be accepted as inevitable consequences of conversion of forested tropical peatlands to other land uses.


AMBIO ◽  
2021 ◽  
Author(s):  
Grahame Applegate ◽  
Blair Freeman ◽  
Benjamin Tular ◽  
Latifa Sitadevi ◽  
Timothy C. Jessup

AbstractIndonesia is home to around 45% of the world’s tropical peatlands which continue to be degraded on a large scale by deforestation, drainage and fire, contributing massively to global GHG emissions. Approaches to restoring the peat–water balance and reducing emissions in peat hydrological units, through managing them based either on full protection or large-scale commercial production, have generally failed to address environmental and local community needs. We present published and unpublished findings pointing to the need for an integrated peatland protection and restoration strategy based first on raising water levels in degraded (drained) peatlands and maintaining them in forested peatlands, thus, reducing GHG emissions. Second, the strategy incorporates ecologically sound agroforestry business models that strengthen livelihoods of smallholders and so sustain their interest in sustainably managing the peatlands. In this paper, we focus on the second element of this strategy in Indonesia. Eight agroforestry business models are proposed based on their merits to attract both smallholders and commercial investors as well as their compatibility with hydrological rehabilitation of the peatlands. While financial returns on investment will vary across sites and countries, our analysis indicates that some models can be profitable over both short and longer time periods with relatively low levels of investment risk.


2019 ◽  
Author(s):  
Symon Mezbahuddin ◽  
Tadas Nikonovas ◽  
Allan Spessa ◽  
Robert Grant ◽  
Muhammad Imron

2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Lei Zhao ◽  
Chunyan Qu ◽  
Dezheng Zhao ◽  
Xinjian Shan ◽  
Han Chen ◽  
...  

We use ALOS-2 and Sentinel-1 data spanning 2015-2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area of the co-seismic deformation field, with a maximum uplift of ~80mm within 4.5 yr after the mainshock. While in the southern coseismic uplift area, the direction of the post-seismic deformation is generally opposite to the co-seismic deformation. Additionally, two notable deformation areas are located in the region around 29°N, and near the MFT, respectively. Sentinel-1 observations reveal post-seismic uplift deformation on the north side of the co-seismic deformation field with an average rate of ~20 mm/yr in line-of-stght. The kinematic afterslip constrained by InSAR data shows that the frictional slip is distributed in both updip and downdip areas. The maximum cumulative afterslip is 0.35 m in downdip areas, and 0.2 m in the updip areas, constrained by the ALOS measurements. The stress-driven afterslip model shows that the afterslip is distributed in the downdip area with a maximum slip of 0.3m during the first year after the earthquake. Within the 4.5 years after the mainshock, the estimated moment released by afterslip is ~1.5174 × 1020 Nm,about 21.2% of that released by the main earthquake.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chris D. Evans ◽  
Nathan Callaghan ◽  
Adi Jaya ◽  
Alistair Grinham ◽  
Sofie Sjogersten ◽  
...  

Peatlands are highly dynamic systems, able to accumulate carbon over millennia under natural conditions, but susceptible to rapid subsidence and carbon loss when drained. Short-term, seasonal and long-term peat surface elevation changes are closely linked to key peatland attributes such as water table depth (WTD) and carbon balance, and may be measured remotely using satellite radar and LiDAR methods. However, field measurements of peat elevation change are spatially and temporally sparse, reliant on low-resolution manual subsidence pole measurements, or expensive sensor systems. Here we describe a novel, simple and low-cost image-based method for measuring peat surface motion and WTD using commercially available time-lapse cameras and image processing methods. Based on almost two years’ deployment of peat cameras across contrasting forested, burned, agricultural and oil palm plantation sites in Central Kalimantan, Indonesia, we show that the method can capture extremely high resolution (sub-mm) and high-frequency (sub-daily) changes in peat surface elevation over extended periods and under challenging environmental conditions. WTD measurements were of similar quality to commercially available pressure transducers. Results reveal dynamic peat elevation response to individual rain events, consistent with variations in WTD. Over the course of the relatively severe 2019 dry season, cameras in deep-drained peatlands recorded maximum peat shrinkage of over 8 cm, followed by partial rebound, leading to net annual subsidence of up to 5 cm. Sites with higher water tables, and where borehole irrigation was used to maintain soil moisture, had lower subsidence, suggesting potential to reduce subsidence through altered land-management. Given the established link between subsidence and CO2 emissions, these results have direct implications for the management of peatlands to reduce high current greenhouse gas (GHG) emissions. Camera-based sensors provide a simple, low-cost alternative to commercial elevation, WTD and GHG flux monitoring systems, suitable for deployment at scale, and in areas where existing approaches are impractical or unaffordable. If ground-based observations of peat motion can be linked to measured GHG fluxes and with satellite-based monitoring tools, this approach offers the potential for a large-scale peatland monitoring tool, suitable for identifying areas of active carbon loss, targeting climate change mitigation interventions, and evaluating intervention outcomes.


1980 ◽  
Vol 11 (3-4) ◽  
pp. 159-168 ◽  
Author(s):  
Henrik Kærgaard

In an earlier paper I have shown an example of how long term drawdowns can be used for the computation of long term storage in artesian and semiartesian areas. In most cases the long term storage is more or less equivalent to the specific yield at the water table; the storage mechanisms of consolidation playing a minor role in long term situations. The specific yield in artesian areas is a very important parameter in the prediction of long term effects of ground water withdrawal. Especially the stream depletion will often mainly be governed by draw-downs in upper nonpumped aquifers near the water table, and these drawdowns depend to a great extent on the specific yield at the water table. A determination of long term storage will often necessitate long term draw-down data, however, under certain circumstances a determination can be made on the basis of a pumping test of limited duration (3-5 weeks) provided drawdown observations at the water table can be made. In this paper some formulas dealing with water table drawdowns in different geohydrologic systems are reviewed, and two cases in which these formulas have been used in practice are presented.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Francisco Muñoz-Arriola ◽  
Tarik Abdel-Monem ◽  
Alessandro Amaranto

Common pool resource (CPR) management has the potential to overcome the collective action dilemma, defined as the tendency for individual users to exploit natural resources and contribute to a tragedy of the commons. Design principles associated with effective CPR management help to ensure that arrangements work to the mutual benefit of water users. This study contributes to current research on CPR management by examining the process of implementing integrated management planning through the lens of CPR design principles. Integrated management plans facilitate the management of a complex common pool resource, ground and surface water resources having a hydrological connection. Water governance structures were evaluated through the use of participatory methods and observed records of interannual changes in rainfall, evapotranspiration, and ground water levels across the Northern High Plains. The findings, documented in statutes, field interviews and observed hydrologic variables, point to the potential for addressing large-scale collective action dilemmas, while building on the strengths of local control and participation. The feasibility of a “bottom up” system to foster groundwater resilience was evidenced by reductions in groundwater depths of 2 m in less than a decade.


Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Accurate prediction of water table depth over long-term in arid agricultural areas are very much important for maintaining environmental sustainability. Because of intricate and diverse hydrogeological features, boundary conditions, and human activities researchers face enormous difficulties for predicting water table depth. A virtual study on forecast of water table depth using various neural networks is employed in this paper. Hybrid neural network approach like Adaptive Neuro Fuzzy Inference System (ANFIS), Recurrent Neural Network (RNN), Radial Basis Function Neural Network (RBFN) is employed here to appraisal water levels as a function of average temperature, precipitation, humidity, evapotranspiration and infiltration loss data. Coefficient of determination (R2), Root mean square error (RMSE), and Mean square error (MSE) are used to evaluate performance of model development. While ANFIS algorithm is used, Gbell function gives best value of performance for model development. Whole outcomes establish that, ANFIS accomplishes finest as related to RNN and RBFN for predicting water table depth in watershed.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 732
Author(s):  
Gusti Z. Anshari ◽  
Evi Gusmayanti ◽  
Nisa Novita

Drainage is a major means of the conversion of tropical peat forests into agriculture. Accordingly, drained peat becomes a large source of carbon. However, the amount of carbon (C) loss from drained peats is not simply measured. The current C loss estimate is usually based on a single proxy of the groundwater table, spatially and temporarily dynamic. The relation between groundwater table and C emission is commonly not linear because of the complex natures of heterotrophic carbon emission. Peatland drainage or lowering groundwater table provides plenty of oxygen into the upper layer of peat above the water table, where microbial activity becomes active. Consequently, lowering the water table escalates subsidence that causes physical changes of organic matter (OM) and carbon emission due to microbial oxidation. This paper reviews peat bulk density (BD), total organic carbon (TOC) content, and subsidence rate of tropical peat forest and drained peat. Data of BD, TOC, and subsidence were derived from published and unpublished sources. We found that BD is generally higher in the top surface layer in drained peat than in the undrained peat. TOC values in both drained and undrained are lower in the top and higher in the bottom layer. To estimate carbon emission from the top layer (0–50 cm) in drained peats, we use BD value 0.12 to 0.15 g cm−3, TOC value of 50%, and a 60% conservatively oxidative correction factor. The average peat subsidence is 3.9 cm yr−1. The range of subsidence rate per year is between 2 and 6 cm, which results in estimated emission between 30 and 90 t CO2e ha−1 yr−1. This estimate is comparable to those of other studies and Tier 1 emission factor of the 2013 IPCC GHG Inventory on Wetlands. We argue that subsidence is a practical approach to estimate carbon emission from drained tropical peat is more applicable than the use of groundwater table.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


Sign in / Sign up

Export Citation Format

Share Document