scholarly journals The climate of the Mediterranean basin during the Holocene from terrestrial and marine pollen records: A model/data comparison

Author(s):  
Odile Peyron ◽  
Nathalie Combourieu-Nebout ◽  
David Brayshaw ◽  
Simon Goring ◽  
Valérie Andrieu-Ponel ◽  
...  

Abstract. Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability. The spatial differentiation and temporal variability, as evident from different climate proxy datasets, has remained notoriously difficult for models to reproduce. In light of this complexity, we examine the previously described evidence for (i) opposing northern and southern precipitation regimes during the Holocene across the Mediterranean basin, and (ii) an east-to-west precipitation gradient or dipole during the early Holocene, from a wet eastern Mediterranean to dry western Mediterranean. Using quantitative climate information from marine and terrestrial pollen archives, we focus on two key time intervals, the early to mid-Holocene (8000 to 6000 cal yrs BP) and the late Holocene (4000 to 2000 yrs BP), in order to test the above mentioned hypotheses on a Mediterranean-wide scale. Palynologically derived climate information is compared with the output of regional-scale climate-model simulations for the same time intervals. Quantitative pollen-based precipitation estimates were generated along a longitudinal gradient from the Alboran (West) to the Aegean Sea (East); they are derived from terrestrial pollen records from Greece, Italy and Malta as well as from pollen records obtained from marine cores. Because seasonality represents a key parameter in Mediterranean climates, special attention was given to the reconstruction of season-specific climate information, notably summer and winter precipitation. The reconstructed climatic trends corroborate a previously described north-south partition of precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions occurred in the south-central and eastern Mediterranean region, while drier conditions prevailed from 45° N northwards. These patterns reversed during the late Holocene, with a wetter northern Mediterranean region and drier conditions in the east and south. More sites from the northern part of the Mediterranean basin are needed to further substantiate these observations. With regard to the existence of a west-east precipitation dipole during the Holocene, our pollen-based climate data show that the strength of this dipole is strongly linked to the seasonal parameter reconstructed: Early Holocene summers show a clear east-to-west gradient, with summer precipitation having been highest in the central and eastern Mediterranean and lowest over the western Mediterranean. In contrast, winter precipitation signals are less spatially coherent. A general drying trend occurred from the early to the late Holocene; particularly in the central and eastern Mediterranean. However, summer precipitation in the east remained above modern values, even during the late Holocene interval. Pollen-inferred precipitation estimates were compared to regional-scale climate modelling simulations based on the HadAM3 GCM coupled to the dynamic HadSM3 and the high-resolution regional HadRM3 models. Climate model outputs and pollen-inferred precipitation estimates show remarkably good overall correspondence, although many simulated patterns are of marginal statistical significance. Nevertheless, models weakly support an east to west division in summer precipitation and there are suggestions that the eastern Mediterranean experienced wetter summer and winter conditions during the early Holocene and wetter summer conditions during the late Holocene. The extent to which summer monsoonal precipitation may have existed in the southern and eastern Mediterranean during the mid-Holocene remains an outstanding question; our model, consistent with other global models, does not suggest an extension of the African monsoon into the Mediterranean. Given the difficulty in modelling future climate change in Southern Europe, more simulations based on high resolution global models and very high resolution regional downscaling, perhaps even including transient simulations, are required to fully understand the patterns of change in winter and summer circulation patterns over the Mediterranean region

2017 ◽  
Vol 13 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Odile Peyron ◽  
Nathalie Combourieu-Nebout ◽  
David Brayshaw ◽  
Simon Goring ◽  
Valérie Andrieu-Ponel ◽  
...  

Abstract. Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability, which is notoriously difficult for models to reproduce. We propose here a new proxy-based climate synthesis synthesis and its comparison – at a regional (∼ 100 km) level – with a regional climate model to examine (i) opposing northern and southern precipitation regimes and (ii) an east-to-west precipitation dipole during the Holocene across the Mediterranean basin. Using precipitation estimates inferred from marine and terrestrial pollen archives, we focus on the early to mid-Holocene (8000 to 6000 cal yr BP) and the late Holocene (4000 to 2000 cal yr BP), to test these hypotheses on a Mediterranean-wide scale. Special attention was given to the reconstruction of season-specific climate information, notably summer and winter precipitation. The reconstructed climatic trends corroborate the north–south partition of precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions occurred in the south–central and eastern Mediterranean regions, while drier conditions prevailed from 45° N northwards. These patterns then reverse during the late Holocene. With regard to the existence of a west–east precipitation dipole during the Holocene, our results show that the strength of this dipole is strongly linked to the reconstructed seasonal parameter; early-Holocene summers show a clear east–west division, with summer precipitation having been highest in Greece and the eastern Mediterranean and lowest over Italy and the western Mediterranean. Summer precipitation in the east remained above modern values, even during the late-Holocene interval. In contrast, winter precipitation signals are less spatially coherent during the early Holocene but low precipitation is evidenced during the late Holocene. A general drying trend occurred from the early to late Holocene, particularly in the central and eastern Mediterranean. For the same time intervals, pollen-inferred precipitation estimates were compared with model outputs, based on a regional-scale downscaling (HadRM3) of a set of global climate-model simulations (HadAM3). The high-resolution detail achieved through the downscaling is intended to enable a better comparison between site-based paleo-reconstructions and gridded model data in the complex terrain of the Mediterranean; the model outputs and pollen-inferred precipitation estimates show some overall correspondence, though modeled changes are small and at the absolute margins of statistical significance. There are suggestions that the eastern Mediterranean experienced wetter summer conditions than present during the early and late Holocene; the drying trend in winter from the early to the late Holocene also appears to be simulated. The use of this high-resolution regional climate model highlights how the inherently patchy nature of climate signals and paleo-records in the Mediterranean basin may lead to local signals that are much stronger than the large-scale pattern would suggest. Nevertheless, the east-to-west division in summer precipitation seems more marked in the pollen reconstruction than in the model outputs. The footprint of the anomalies (like today, or dry winters and wet summers) has some similarities to modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive Arctic Oscillation–North Atlantic Oscillation (AO–NAO)) and a weak westerly circulation in summer associated with anticyclonic blocking; however, there also remain important differences between the paleo-simulations and these analogues. The regional climate model, consistent with other global models, does not suggest an extension of the African summer monsoon into the Mediterranean. Therefore, the extent to which summer monsoonal precipitation may have existed in the southern and eastern Mediterranean during the mid-Holocene remains an outstanding question.


2013 ◽  
Vol 9 (3) ◽  
pp. 1233-1252 ◽  
Author(s):  
O. Peyron ◽  
M. Magny ◽  
S. Goring ◽  
S. Joannin ◽  
J.-L. de Beaulieu ◽  
...  

Abstract. Lake-level records from Italy suggest that patterns of precipitation in the central Mediterranean during the Holocene were divided between the north and south, but a scarcity of reliable palaeoclimatic records in the north and central-southern Mediterranean means new evidence is needed to validate this hypothesis. We provide robust quantitative estimates of Holocene climate in the Mediterranean region using four high-resolution pollen records from northern (Lakes Ledro and Accesa) and southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the palaeoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based weighted averaging, weighted-average partial least-squares regression, modern analogue technique, and the non-metric multidimensional scaling/generalized additive model methods. We use independent lake-level data to validate the precipitation reconstructions. Our results support a climatic partition between northern and southern Italy during the Holocene, confirming the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. The northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake levels during the early to mid-Holocene, while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake levels at the same time. Both pollen-inferred precipitation and lake levels indicate the opposite pattern during the late Holocene, a maximum in northern Italy and a minimum in southern Italy/Sicily. Summer temperatures show the same partitioning, with warm conditions in northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the late Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy show strong similarities with those recognized from the Aegean Sea, and more generally speaking in the eastern Mediterranean.


2021 ◽  
Vol 118 (23) ◽  
pp. e2024898118
Author(s):  
Rachid Cheddadi ◽  
Matthieu Carré ◽  
Majda Nourelbait ◽  
Louis François ◽  
Ali Rhoujjati ◽  
...  

The greening of the Sahara, associated with the African Humid Period (AHP) between ca. 14,500 and 5,000 y ago, is arguably the largest climate-induced environmental change in the Holocene; it is usually explained by the strengthening and northward expansion of the African monsoon in response to orbital forcing. However, the strengthened monsoon in Early to Middle Holocene climate model simulations cannot sustain vegetation in the Sahara or account for the increased humidity in the Mediterranean region. Here, we present an 18,500-y pollen and leaf-wax δD record from Lake Tislit (32° N) in Morocco, which provides quantitative reconstruction of winter and summer precipitation in northern Africa. The record from Lake Tislit shows that the northern Sahara and the Mediterranean region were wetter in the AHP because of increased winter precipitation and were not influenced by the monsoon. The increased seasonal contrast of insolation led to an intensification and southward shift of the Mediterranean winter precipitation system in addition to the intensified summer monsoon. Therefore, a winter rainfall zone must have met and possibly overlapped the monsoonal zone in the Sahara. Using a mechanistic vegetation model in Early Holocene conditions, we show that this seasonal distribution of rainfall is more efficient than the increased monsoon alone in generating a green Sahara vegetation cover, in agreement with observed vegetation. This conceptual framework should be taken into consideration in Earth system paleoclimate simulations used to explore the mechanisms of African climatic and environmental sensitivity.


2012 ◽  
Vol 8 (6) ◽  
pp. 5817-5866 ◽  
Author(s):  
O. Peyron ◽  
M. Magny ◽  
S. Goring ◽  
S. Joannin ◽  
J.-L. de Beaulieu ◽  
...  

Abstract. Lake-level records from Italy suggest a north–south climatic partition in the Central Mediterranean during the Holocene with respect to precipitation, but the scarcity of reliable palaeoclimatic records in the North and Central-Southern Mediterranean means new evidence is needed to validate this hypothesis. Here, we provide robust quantitative estimates of Holocene climate in the Mediterranean region based on four high-resolution pollen records from Northern (Lakes Ledro and Accesa) and Southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the paleoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based Weighted Averaging, Weighted-Average-Partial-Least-Squares regression, Modern Analogues Technique, and the Non-Metric-Multidimensional Scaling/Generalized-Additive-Model methods. The precipitation seasonality reconstructions are validated by independent lake-level data, obtained from the same records. A climatic partition between the north and the south during the Holocene confirms the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. During the early-to-mid-Holocene the northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake-levels while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake-levels. During the late Holocene, both pollen-inferred precipitation and lake-levels indicate the opposite pattern, a maximum in North Italy and a minimum in Southern Italy/Sicily. Summer temperatures also show partitioning, with warm conditions in Northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the Late-Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy shows strong similarities with those recognized from the Aegean Sea, and more generally speaking in the Eastern Mediterranean.


2021 ◽  
Author(s):  
Esmeralda Cruz-Silva ◽  
Sandy P. Harrison ◽  
Elena Marinova ◽  
I. Colin Prentice

<p>The circum-Mediterranean region is characterized by high climatic diversity derived from its orographic heterogeneity and the influence of global marine and atmospheric circulation patterns. The region also has a long and dynamic history of human occupation dating back to ~ 8000 years BP.  The complexity of this area is a challenge for reconstructing the dynamics of the vegetation through the Holocene. Rule-based approaches to reconstructing changing vegetation patterns through time are insufficient as they require the imposition of subjective boundaries between biomes and can be affected by known biases in pollen representation.  We have developed and tested a new method that characterises biomes as a function of observed pollen assemblages based on a similarity index, conceptually related to the likelihood function, which takes account of within-biome variability in taxon abundances. We use 1181 modern pollen samples from the EMBSeCBIO database and assign these samples to biomes as represented in a map of potential natural vegetation that was developed using machine learning. The method was applied down-core to reconstruct past vegetation changes. Preliminary results show that this new methodology produces more accurate biome assignments under modern conditions (<80% accuracy) and more stable down-core reconstructions, apparently reducing the "flickering switch" problem found when using the traditional biomisation method for this purpose. Climate-induced vegetation changes are observable on a sub-regional scale in the Eastern Mediterranean through the Holocene. Most of the records show a change from humid to more arid biomes between 4000 and 3000 years BP. However, they are distinct subregional patterns in the expression and timing of wetter conditions during the Holocene. Mountain regions appear to show more muted changes during the Holocene, although there are biome shifts everywhere across the Pleistocene-Holocene transition.</p>


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 748
Author(s):  
Susana Gómez-González ◽  
Maria Paniw ◽  
Mario Durán ◽  
Sergio Picó ◽  
Irene Martín-Rodríguez ◽  
...  

Some fire ecology studies that have focused on garrigue-like vegetation suggest a weak selective pressure of fire in the Mediterranean Basin compared to other Mediterranean-type regions. However, fire-prone Mediterranean heathland from the western end of the Mediterranean Basin has been frequently ignored in the fire ecology literature despite its high proportion of pyrogenic species. Here, we explore the evolutionary ecology of seed traits in the generalist rockrose Cistus salviifolius L. (Cistaceae) aiming to ascertain the role of the Mediterranean heathland for fire adaptations in the Mediterranean Region. We performed a germination experiment to compare the relationship of seed size to (i) heat-stimulated germination, (ii) dormancy strength, and (iii) heat survival in plants from ‘high-fire’ heathland vs. ‘low-fire’ coastal shrubland. Germination after heat-shock treatment was higher in large seeds of both ‘high-fire’ and ‘low-fire’ habitats. However, dormancy was weaker in small seeds from ‘low-fire’ habitats. Finally, seed survival to heat shock was positively related to seed size. Our results support that seed size is an adaptive trait to fire in C. salviifolius, since larger seeds had stronger dormancy, higher heat-stimulated germination and were more resistant to heat shock. This seed size–fire relationship was tighter in ‘high-fire’ Mediterranean heathland than ‘low-fire’ coastal shrubland, indicating the existence of differential fire pressures and evolutionary trends at the landscape scale. These findings highlight the Mediterranean heathland as a relevant habitat for fire-driven evolution, thus contributing to better understand the role of fire in plant evolution within the Mediterranean region.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5260 ◽  
Author(s):  
Valentina di Rienzo ◽  
Sara Sion ◽  
Francesca Taranto ◽  
Nunzio D’Agostino ◽  
Cinzia Montemurro ◽  
...  

Background The olive tree is a typical crop of the Mediterranean basin where it shows a wide diversity, accounting for more than 2,600 cultivars. The ability to discriminate olive cultivars and determine their genetic variability is pivotal for an optimal exploitation of olive genetic resources. Methods We investigated the genetic diversity within 128 olive accessions belonging to four countries in the Mediterranean Basin (Italy, Algeria, Syria, and Malta), with the purpose of better understanding the origin and spread of the olive genotypes across Mediterranean Basin countries. Eleven highly polymorphic simple sequence repeat (SSR) markers were used and proved to be very informative, producing a total of 179 alleles. Results Cluster analysis distinguished three main groups according to their geographical origin, with the current sample of Maltese accessions included in the Italian group. Phylogenetic analysis further differentiated Italian and Maltese olive accessions, clarifying the intermediate position of Maltese accessions along the x/y-axes of principal coordinate analysis (PCoA). Model-based and neighbor clustering, PCoA, and migration analysis suggested the existence of two different gene pools (Algerian and Syrian) and that the genetic exchange occurred between the Syrian, Italian and Maltese populations. Discussion The close relationship between Syrian and Italian and Maltese olives was consistent with the historical domestication and migration of olive tree from the North Levant to eastern Mediterranean basin. This study lays the foundations for a better understanding of olive genetic diversity in the Mediterranean basin and represents a step toward an optimal conservation and exploitation of olive genetic resources.


2015 ◽  
Vol 3 (6) ◽  
pp. 3687-3732 ◽  
Author(s):  
U. Dayan ◽  
K. M. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes producing heavy rain storms. It distinguishes the Western and Eastern Mediterranean in order to point at specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger scale circulations. The synoptic systems (tropical and extra-tropical) accounting for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper-level synoptic-scale troughs, and meso-scale convective systems. Under tropical air mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2015 ◽  
Vol 12 (8) ◽  
pp. 8459-8504 ◽  
Author(s):  
M. Fader ◽  
S. Shi ◽  
W. von Bloh ◽  
A. Bondeau ◽  
W. Cramer

Abstract. Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.


2009 ◽  
Vol 3 (09) ◽  
pp. 654-659 ◽  
Author(s):  
Michael A. Borg ◽  
Barry D. Cookson ◽  
Peter Zarb ◽  
Elizabeth A. Scicluna ◽  
ARMed Steering Group & Collaborators *

Antimicrobial resistance has become a global threat to effective health care delivery. This is particularly the case within the Mediterranean region, where data from recent studies suggests the situation to be particularly acute. A better knowledge base, as well as a collaborative effort, is therefore required to address this ever increasing challenge to effective patient care. Over its four-year period, the Antibiotic Resistance Surveillance and Control in the Mediterranean Region (ARMed) project investigated the epidemiology of antimicrobial resistance, as well as its contributory factors, in a number of countries in the southern and eastern Mediterranean region through the collection of comparable and validated data. The project culminated in a consensus conference held in Malta in November 2006. The conference provided a forum for expert delegates to agree on a number of priority strategic recommendations that would be relevant to resistance containment efforts in the region. There was general agreement on the need for surveillance and audit to underpin any intervention to tackle antimicrobial resistance, both to monitor changing epidemiological trends in critical pathogens as well as to identify antibiotic consumption practices and effectiveness of prevention and control of health care associated infections. In addition, the importance to convey these data to key users was also stressed in all workshops, as was better education and training of health care workers. The recommendations also made it clear that ownership of the problem needs to be improved throughout the region and that resources, both financial as well as human, must be allocated by the respective policy makers in order to combat it.


Sign in / Sign up

Export Citation Format

Share Document