scholarly journals Paleogeographic controls on the evolution of Late Cretaceous ocean circulation

2020 ◽  
Author(s):  
Jean-Baptiste Ladant ◽  
Christopher J. Poulsen ◽  
Frédéric Fluteau ◽  
Clay R. Tabor ◽  
Kenneth G. MacLeod ◽  
...  

Abstract. Understanding of the role of ocean circulation on climate during the Late Cretaceous is contingent on the ability to reconstruct its modes and evolution. Geochemical proxies used to infer modes of past circulation provide conflicting interpretations for the reorganization of the ocean circulation through the Late Cretaceous. Here, we present climate model simulations of the Cenomanian (100.5–93.9 Ma) and Maastrichtian (72.1–66.1 Ma) stages of the Cretaceous with the CCSM4 earth system model. We focus on intermediate (500–1500 m) and deep (> 1500 m) ocean circulation, and show that while there is continuous deep-water production in the southwest Pacific, major circulation changes occur between the Cenomanian and Maastrichtian. Opening of the Atlantic and Southern Ocean, in particular, drives a transition from a mostly zonal circulation to enhanced meridional exchange. Using additional experiments to test the effect of deepening of major ocean gateways in the Maastrichtian, we demonstrate that the geometry of these gateways likely had a considerable impact on ocean circulation. We further compare simulated circulation results with compilations of εNd records and show that simulated changes in Late Cretaceous ocean circulation are reasonably consistent with inferences from this proxy. In our simulations, consistency with the geologic history of major ocean gateways and absence of shift in areas of deep-water formation suggest that the Late Cretaceous trend in εNd values in the Atlantic and southern Indian Oceans was caused by the subsidence of volcanic provinces and opening of the Atlantic and Southern Oceans rather than changes in deep-water formation areas and/or reversal of deep-water fluxes. However, the complexity in interpreting Late Cretaceous εNd values underscores the need for new records as well as specific εNd modeling to better discriminate between the various plausible theories of ocean circulation change during this period.

2020 ◽  
Vol 16 (3) ◽  
pp. 973-1006 ◽  
Author(s):  
Jean-Baptiste Ladant ◽  
Christopher J. Poulsen ◽  
Frédéric Fluteau ◽  
Clay R. Tabor ◽  
Kenneth G. MacLeod ◽  
...  

Abstract. Understanding of the role of ocean circulation on climate during the Late Cretaceous is contingent on the ability to reconstruct its modes and evolution. Geochemical proxies used to infer modes of past circulation provide conflicting interpretations for the reorganization of the ocean circulation through the Late Cretaceous. Here, we present climate model simulations of the Cenomanian (100.5–93.9 Ma) and Maastrichtian (72.1–66.1 Ma) stages of the Cretaceous with the CCSM4 earth system model. We focus on intermediate (500–1500 m) and deep (> 1500 m) ocean circulation and show that while there is continuous deep-water production in the southwestern Pacific, major circulation changes occur between the Cenomanian and Maastrichtian. Opening of the Atlantic and Southern Ocean, in particular, drives a transition from a mostly zonal circulation to enhanced meridional exchange. Using additional experiments to test the effect of deepening of major ocean gateways in the Maastrichtian, we demonstrate that the geometry of these gateways likely had a considerable impact on ocean circulation. We further compare simulated circulation results with compilations of εNd records and show that simulated changes in Late Cretaceous ocean circulation are reasonably consistent with proxy-based inferences. In our simulations, consistency with the geologic history of major ocean gateways and absence of shift in areas of deep-water formation suggest that Late Cretaceous trends in εNd values in the Atlantic and southern Indian oceans were caused by the subsidence of volcanic provinces and opening of the Atlantic and Southern oceans rather than changes in deep-water formation areas and/or reversal of deep-water fluxes. However, the complexity in interpreting Late Cretaceous εNd values underscores the need for new records as well as specific εNd modeling to better discriminate between the various plausible theories of ocean circulation change during this period.


Ocean Science ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 609-622 ◽  
Author(s):  
Céline Heuzé

Abstract. Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.


2011 ◽  
Vol 7 (2) ◽  
pp. 487-499 ◽  
Author(s):  
V. Kamphuis ◽  
S. E. Huisman ◽  
H. A. Dijkstra

Abstract. To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterised by an Atlantic Meridional Overturning Circulation (MOC) with a deep water formation at northern latitudes and the absence of such a deep water formation in the North Pacific. This MOC asymmetry is often attributed to the difference in surface freshwater flux: the Atlantic as a whole is a basin with net evaporation, while the Pacific receives net precipitation. This issue is revisited in this paper by considering the global ocean circulation on a retrograde rotating earth, computing an equilibrium state of the coupled atmosphere-ocean-land surface-sea ice model CCSM3. The Atlantic-Pacific asymmetry in surface freshwater flux is indeed reversed, but the ocean circulation pattern is not an Inverse Conveyor state (with deep water formation in the North Pacific) as there is relatively weak but intermittently strong deep water formation in the North Atlantic. Using a fully-implicit, global ocean-only model the stability properties of the Atlantic MOC on a retrograde rotating earth are also investigated, showing a similar regime of multiple equilibria as in the present-day case. These results indicate that the present-day asymmetry in surface freshwater flux is not the most important factor setting the Atlantic-Pacific salinity difference and, thereby, the asymmetry in the global MOC.


2020 ◽  
Author(s):  
Yurui Zhang ◽  
Thierry Huck ◽  
Camille Lique ◽  
Yannick Donnadieu ◽  
Jean-Baptiste Ladant ◽  
...  

Abstract. The early Eocene (~ 55 Ma) is the warmest period, and most likely characterized by the highest atmospheric CO2 concentrations, of the Cenozoic era. Here, we analyze simulations of the early Eocene performed with the IPSL-CM5A2 coupled climate model set up with paleogeographic reconstructions of this period from the DeepMIP project, with different levels of atmospheric CO2, and compare them with simulations of the modern conditions. This allows us to explore the changes of the ocean circulation and the resulting ocean meridional heat transport. At a CO2 level of 840 ppm, the Early Eocene simulation is characterized by a strong abyssal overturning circulation in the Southern Hemisphere (40 Sv at 60º S), fed by deep water formation in the three sectors of the Southern Ocean. Deep convection in the Southern Ocean is favored by the closed Drake and Tasmanian passages, which provide western boundaries for the build-up of strong subpolar gyres in the Weddell and Ross seas, in the middle of which convection develops. The strong overturning circulation, associated with the subpolar gyres, sustains the poleward advection of saline subtropical water to the convective region in the Southern Ocean, maintaining deep-water formation. This salt-advection feedback mechanism works similarly in the present-day North Atlantic overturning circulation. The strong abyssal overturning circulation in the 55 Ma simulations primarily results in an enhanced poleward ocean heat transport by 0.3–0.7 PW in the Southern Hemisphere compared to modern conditions, reaching 1.7 PW southward at 20° S, and contributing to maintain the Southern Ocean and Antarctica warm in the Eocene. Simulations with different atmospheric CO2 levels show that the ocean circulation and heat transport are relatively insensitive to CO2-doubling.


2013 ◽  
Vol 26 (16) ◽  
pp. 6163-6184 ◽  
Author(s):  
Johan Nilsson ◽  
Peter L. Langen ◽  
David Ferreira ◽  
John Marshall

Abstract A coupled atmosphere–sea ice–ocean model is used in an aqua-planet setting to examine the role of the basin geometry for the climate and ocean circulation. The basin geometry has a present-day-like topology with two idealized northern basins and a circumpolar ocean in the south. A suite of experiments is described in which the southward extents of the two (gridpoint wide) “continents” and the basin widths have been varied. When the two basins have identical shapes, the coupled model can attain a symmetric climate state with northern deep-water formation in both basins as well as asymmetric states, where the deep-water formation occurs only in one of the basins and Atlantic–Pacific-like hydrographic differences develop. A difference in the southward extents of the land barriers can enhance as well as reduce the zonal asymmetries of the atmosphere–ocean circulation. This arises from an interplay between the basin boundaries and the wind-driven Sverdrup circulation, which controls the interbasin exchange of heat and salt. Remarkably, when the short “African” continent is located near or equatorward of the zero wind line in the Southern Hemisphere, the deep-water formation becomes uniquely localized to the “Atlantic”-like basin with the long western boundary. In this case, the salinification is accomplished primarily by a westward wind-routed interbasin salt transport. Furthermore, experiments using geometries with asymmetries in both continental extents and basin widths suggest that in the World Ocean these two fundamental basin asymmetries should independently be strong enough for uniquely localizing the Northern Hemisphere deep-water formation to the Atlantic Ocean.


2017 ◽  
Author(s):  
Céline Heuzé

Abstract. Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often, and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turns, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecast Arctic oceanic warming and its consequences on the global ocean circulation, cryosphere and marine life.


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 509-513 ◽  
Author(s):  
Shannon J. Haynes ◽  
Kenneth G. MacLeod ◽  
Jean-Baptiste Ladant ◽  
Andrew Vande Guchte ◽  
Masoud A. Rostami ◽  
...  

Abstract Geochemical data suggest that ocean circulation patterns changed over a period of long-term cooling during the last 10 m.y. of the Cretaceous (late Campanian–Maastrichtian). Proposed changes include enhanced deep-water formation in the South Atlantic and/or Indian sectors of the Southern Ocean, initiation or enhanced deep-water formation in the North Atlantic, and alternating regions of deep convection in the North and South Pacific. Existing geochemical data do not allow simple confirmation or rejection of any of these scenarios. To test Pacific circulation during the Maastrichtian, we measured neodymium isotopic (εNd) values from four Pacific Deep Sea Drilling Project and Ocean Drilling Program sites and compare results both to Earth system model simulations using Maastrichtian paleogeography and to previous studies. Pacific εNd results consistently show a small negative εNd excursion during a well-documented, ∼1–3 m.y. early Maastrichtian cooling pulse (EMCP) but no other consistent trends across the late Campanian–late Maastrichtian interval (∼10 m.y.). Model results show that different CO2 forcings lead to changes in rates, but not patterns, of circulation. These combined results support the existence of a sustained source region for intermediate and deep waters in the southwestern Pacific throughout the late Campanian–Maastrichtian and indicate that changes in εNd values during the EMCP reflect an increased rate of overturning in the Pacific rather than changes in the source area of Pacific bottom waters.


Sign in / Sign up

Export Citation Format

Share Document