scholarly journals High-frequency climate oscillations in the Holocene from a coastal-dome ice core in east central Greenland

2020 ◽  
Author(s):  
Abigail G. Hughes ◽  
Tyler R. Jones ◽  
Bo M. Vinther ◽  
Vasileios Gkinis ◽  
C. Max Stevens ◽  
...  

Abstract. An ice core drilled on the Renland Ice Cap in east-central Greenland contains a continuous climate record dating through the last glacial period. The Renland record is valuable because the coastal environment is more likely to reflect regional sea surface conditions, compared to inland Greenland ice cores that capture synoptic variability. Here we present the δ18O water isotope record for the Holocene, in which decadal-scale climate information is retained for the last 8 ka, and the annual water isotope signal is preserved throughout the last 2.6 ka. To investigate regional climate information preserved in the water isotope record, we apply spectral analysis techniques to a 300-year moving window to determine the mean strength of varying frequency bands through time. The strength of interannual frequency bands decays rapidly, but we find that the mean 15–20 year δ18O variability exhibits a millennial-scale cycle in line with the well-known Bond Cycle. Comparison to other North Atlantic proxy records suggests that the 15–20 year variability may reflect fluctuating sea ice conditions throughout the Holocene, driven by changes in the strength of the Atlantic Meridional Overturning Circulation. Additional analysis of the seasonal signal over the last 2.6 ka reveals that the winter δ18O signal has experienced a decreasing trend, while the summer signal has predominantly remained stable. The winter trend likely corresponds to an increase in Arctic sea ice cover, driven by a decrease in total annual insolation. In the context of anthropogenic climate change, the winter trend may have important implications for feedback processes as sea ice retreats in the Arctic.

2020 ◽  
Vol 16 (4) ◽  
pp. 1369-1386
Author(s):  
Abigail G. Hughes ◽  
Tyler R. Jones ◽  
Bo M. Vinther ◽  
Vasileios Gkinis ◽  
C. Max Stevens ◽  
...  

Abstract. An ice core drilled on the Renland ice cap in east-central Greenland contains a continuous climate record dating through the last glacial period. The Renland record is valuable because the coastal environment is more likely to reflect regional sea surface conditions compared to inland Greenland ice cores that capture synoptic variability. Here we present the δ18O water isotope record for the Holocene, in which decadal-scale climate information is retained for the last 8 kyr, while the annual water isotope signal is preserved throughout the last 2.6 kyr. To investigate regional climate information preserved in the water isotope record, we apply spectral analysis techniques to a 300-year moving window to determine the mean strength of varying frequency bands through time. We find that the strength of 15–20-year δ18O variability exhibits a millennial-scale signal in line with the well-known Bond events. Comparison to other North Atlantic proxy records suggests that the 15–20-year variability may reflect fluctuating sea surface conditions throughout the Holocene, driven by changes in the strength of the Atlantic Meridional Overturning Circulation. Additional analysis of the seasonal signal over the last 2.6 kyr reveals that the winter δ18O signal has experienced a decreasing trend, while the summer signal has predominantly remained stable. The winter trend may correspond to an increase in Arctic sea ice cover, which is driven by a decrease in total annual insolation, and is also likely influenced by regional climate variables such as atmospheric and oceanic circulation. In the context of anthropogenic climate change, the winter trend may have important implications for feedback processes as sea ice retreats in the Arctic.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 145
Author(s):  
Jian Liu ◽  
Liyang Zhan ◽  
Qingkai Wang ◽  
Man Wu ◽  
Wangwang Ye ◽  
...  

Nitrous oxide (N2O) is the third most important greenhouse gas in the atmosphere, and the ocean is an important source of N2O. As the Arctic Ocean is strongly affected by global warming, rapid ice melting can have a significant impact on the N2O pattern in the Arctic environment. To better understand this impact, N2O concentration in ice core and underlying seawater (USW) was measured during the seventh Chinese National Arctic Research Expedition (CHINARE2016). The results showed that the average N2O concentration in first-year ice (FYI) was 4.5 ± 1.0 nmol kg−1, and that in multi-year ice (MYI) was 4.8 ± 1.9 nmol kg−1. Under the influence of exchange among atmosphere-sea ice-seawater systems, brine dynamics and possible N2O generation processes at the bottom of sea ice, the FYI showed higher N2O concentrations at the bottom and surface, while lower N2O concentrations were seen inside sea ice. Due to the melting of sea ice and biogeochemical processes, USW presented as the sink of N2O, and the saturation varied from 47.2% to 102.2%. However, the observed N2O concentrations in USW were higher than that of T-N2OUSW due to the sea–air exchange, diffusion process, possible N2O generation mechanism, and the influence of precipitation, and a more detailed mechanism is needed to understand this process in the Arctic Ocean.


2018 ◽  
Author(s):  
Minjie Zheng ◽  
Jesper Sjolte ◽  
Florian Adolphi ◽  
Bo Møllesøe Vinther ◽  
Hans Christian Steen-Larsen ◽  
...  

2019 ◽  
Vol 5 (12) ◽  
pp. eaax8203 ◽  
Author(s):  
Hyo-Seok Park ◽  
Seong-Joong Kim ◽  
Andrew L. Stewart ◽  
Seok-Woo Son ◽  
Kyong-Hwan Seo

The Holocene thermal maximum was characterized by strong summer solar heating that substantially increased the summertime temperature relative to preindustrial climate. However, the summer warming was compensated by weaker winter insolation, and the annual mean temperature of the Holocene thermal maximum remains ambiguous. Using multimodel mid-Holocene simulations, we show that the annual mean Northern Hemisphere temperature is strongly correlated with the degree of Arctic amplification and sea ice loss. Additional model experiments show that the summer Arctic sea ice loss persists into winter and increases the mid- and high-latitude temperatures. These results are evaluated against four proxy datasets to verify that the annual mean northern high-latitude temperature during the mid-Holocene was warmer than the preindustrial climate, because of the seasonally rectified temperature increase driven by the Arctic amplification. This study offers a resolution to the “Holocene temperature conundrum”, a well-known discrepancy between paleo-proxies and climate model simulations of Holocene thermal maximum.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James Hogg ◽  
Maria Fonoberova ◽  
Igor Mezić

Abstract Sea ice cover in the Arctic and Antarctic is an important indicator of changes in the climate, with important environmental, economic and security consequences. The complexity of the spatio-temporal dynamics of sea ice makes it difficult to assess the temporal nature of the changes—e.g. linear or exponential—and their precise geographical loci. In this study, Koopman Mode Decomposition (KMD) is applied to satellite data of sea ice concentration for the Northern and Southern hemispheres to gain insight into the temporal and spatial dynamics of the sea ice behavior and to predict future sea ice behavior. We observe spatial modes corresponding to the mean and annual variation of Arctic and Antarctic sea ice concentration and observe decreases in the mean sea ice concentration from early to later periods, as well as corresponding shifts in the locations that undergo significant annual variation in sea ice concentration. We discover exponentially decaying spatial modes in both hemispheres and discuss their precise spatial extent, and also perform predictions of future sea ice concentration. The Koopman operator-based, data-driven decomposition technique gives insight into spatial and temporal dynamics of sea ice concentration not apparent in traditional approaches.


2013 ◽  
Vol 9 (6) ◽  
pp. 2789-2807 ◽  
Author(s):  
S. Schüpbach ◽  
U. Federer ◽  
P. R. Kaufmann ◽  
S. Albani ◽  
C. Barbante ◽  
...  

Abstract. In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.


2020 ◽  
Author(s):  
Rachael Rhodes ◽  
Xin Yang ◽  
Eric Wolff

<p>It is important to understand the magnitude and rate of past sea ice changes, as well as their timing relative to abrupt shifts in other components of Earth’s climate system. Furthermore, records of past sea ice over the last few centuries are urgently needed to assess the scale of natural (internal) variability over decadal timescales. By continuously recording past atmospheric composition, polar ice cores have the potential to document changing sea ice conditions if atmospheric chemistry is altered.  Sea salt aerosol, specifically sodium (Na), and bromine enrichment (Br<sub>enr</sub>, Br/Na enriched relative to seawater ratio) are two ice core sea ice proxies suggested following this premise.</p><p>Here we aim to move beyond a conceptual understanding of the controls on Na and Br<sub>enr</sub> in ice cores by using process-based modelling to test hypotheses. We present results of experiments using a 3D global chemical transport model (p-TOMCAT) that represents marine aerosol emission, transport and deposition. Critically, the complex atmospheric chemistry of bromine is also included. Three fundamental issues will be examined: 1) the partitioning of Br between gas and aerosol phases, 2) sea salt aerosol production from first-year versus multi-year sea ice, and 3) the impact of increased acidity in the atmosphere due to human activity in the Arctic.</p>


2007 ◽  
Vol 44 (3) ◽  
pp. 363-374 ◽  
Author(s):  
Charles Tarnocai

ABSTRACTAlthough paleosols are useful indicators of paleoclimates. it is first necessary to establish the relationships between the northern limits of the various contemporary soils and the pertinent climatic parameters. It is then necessary to determine the age of the various paleosols and, if possible, their northern limits. Comparison of the distribution and northern limits of the contemporary soils with the distribution and northern limits of the analogous paleosols then permits the reconstruction of the paleoenvironments. For the purposes of comparison the mean annual temperature of the Old Crow area during the Pliocene epoch was also determined (about 4°C) even though this was not an interglacial period. It was found that during the pre-lllinoian interglacial periods the central Yukon had a mean annual temperature of about 7°C while during the Sangamonian interglacial period it had a mean annual temperature of about - 3°C. During the Holocene epoch, the current interglacial period, the climate has been similar to or only slightly cooler than that existing during the Sangamonian interglacial period. The fluctuating position of the arctic tree line (and associated forest soils) during the Holocene epoch, however, indicates that the climate has also been fluctuating during this time. The paleoclimatic reconstruction presented in this paper also relies heavily on both diagnostic soil features and the soil development during the various interglacial periods.


Sign in / Sign up

Export Citation Format

Share Document