scholarly journals NEEM to EastGRIP Traverse – spatial variability, seasonality, extreme events and trends in common ice core proxies over the past decades

2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Patrick Zens ◽  
Samuel Black ◽  
Kasper Holst Lund ◽  
Anders Svensson ◽  
...  

Abstract. Greenland ice cores provide information about past climate. However, the number of firn and ice cores from Greenland are limited and thus the spatial variability of the chemical impurities used as proxies is largely unconstrained. Furthermore, few impurity records covering the past two decades exist from Greenland. We have by means of Continuous Flow analysis investigated 6 shallow firn cores obtained in Northern Greenland as part of the NEEM to EastGRIP traverse in 2015. The oldest reach back to 1966. The annual mean and quartiles of the insoluble dust, ammonium, and calcium concentrations in the 6 firn cores spanning a distance of 426 km overlap, and also the seasonal cycles have similar peaks in timing and magnitude across sites. Peroxide (H2O2) is accumulation dependent and varies from site to site and conductivity, likely influenced by sea salts, also vary spatially. The temporal variability of the records is further assessed. We find no evidence for increases in total dust concentration, but find an increase in the large dust particle fluxes that we contribute to an activation of Greenland local sources in the recent years (1998–2015). We observe the expected acid and conductivity increase in the mid 70’s as a result of anthropogenic contamination and the following decrease due to mitigation. After detrending using the five year average the conductivity and acid records several volcanic horizons were identified and associated with Icelandic eruptions and volcanic eruptions in the Barents sea region. By creating a composite based on excess ammonium compared to the five year running average, we obtain a robust forest fire proxy associated primarily with Canadian forest fires (R = 0.51). We also note that the peak ammonium in the individual firn cores appear more scattered between cores than the peak volcanic layers, suggesting that the forest fire signal is more dispersed in the atmosphere than the acid from volcanic eruptions.

2020 ◽  
Author(s):  
Camilla Marie Jensen ◽  
Tobias Erhardt ◽  
Giulia Sinnl ◽  
Hubertus Fischer

<p>Ice sheets are reliable archives of atmospheric impurities such as aerosols and gasses of both natural and anthropogenic origin. Impurity records from Greenland ice cores reveal much information about previous atmospheric conditions and long-range transport in the Northern hemisphere going back more than a hundred thousand years.</p><p>Here we present the data from the upper 1,411 m from the EGRIP ice core, measuring conductivity, dust, sodium, calcium, ammonium, and nitrate. These records contain information about ocean sources, transport of terrestrial dust, soil and vegetation emissions as well as biomass burning, volcanic eruptions, etc., covering approximately the past 15,000 years. This newly obtained data set is unique as it provides the first high-resolution information about several thousands of years of the mid-Holocene period in Greenland that none of the previous impurity records from the other deep Greenland ice cores had managed to cover before due to brittle ice. This will contribute to further understanding of the atmospheric conditions for the pre-industrial period.</p><p>The ammonium record contains peaks significantly higher than the background level. These peaks are caused by biomass burning or forest fires emitting plumes of ammonia large enough so that they can extend to the free troposphere and be efficiently transported all the way to the Greenland ice sheet. Here we present preliminary results of the wild fire frequency covering the entire Holocene, where the wild fires are defined as outliers in the ammonium record of annual means.</p>


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Margaret Harlan ◽  
Paul Vallelonga ◽  
Anders Svensson ◽  
Thomas Blunier ◽  
...  

<div><span><span>The Dye-3 ice core was drilled to bedrock at the Southern part of the central Greenland ice sheet (65°11'N, 43°50'W) in 1979-1981. The southern location is characterized by high accumulation rates compared to more central locations of the ice sheet. Since its drilling, numerous analyses of the core have been performed, and the ice has since been in freezer storage both in the USA and in Denmark.</span></span></div><div><span>In October and November 2019, the remaining ice, two mostly complete sections covering the depths of 1753–1820m and 1865–1918m of the Dye-3 core, were melted during a continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. The data represents both Holocene, Younger Dryas and Glacial sections (GS 5 to 12).</span></div><div> </div><div><span><span>The measured data consist chemistry and impurities contained in the ice, isotopes, as well as analysis of methane and other atmospheric gases. </span></span></div><div><span><span>The chemistry measurements include NH</span></span><span><span><sub>4</sub></span></span><span><span><sup>+</sup></span></span><span><span>, Ca</span></span><span><span><sup>2+</sup></span></span><span><span>, and Na</span></span><span><span><sup>+</sup></span></span><span><span> ions, which besides being influenced by transport, provide information about forest fires, wind-blown dust, and sea ice, respectively, as well as acidity, which aids in the identification of volcanic events contained in the core. The quantity and grain size distribution of insoluble particles was analyzed by means of an Abakus laser particle counter.</span></span></div><div> </div><div><span>We compare the new high-resolution CFA record of dye3 with previous analysis and thus evaluate the progress made over 40 years. Further we compare overlapping time periods with other central Greenland ice cores and discuss spatial patterns in relation to the presented climate proxies.</span></div>


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


2007 ◽  
Vol 45 ◽  
pp. 178-182 ◽  
Author(s):  
Matthias Bigler ◽  
Anders Svensson ◽  
Jørgen Peder Steffensen ◽  
Patrik Kaufmann

AbstractSulphate (SO42–) is a major ion found in polar ice cores and is related to different aerosol sources and processes. Explosive volcanic eruptions, even far away, can cause distinct sulphate peaks in ice core records. Thus, a robust sulphate detection system which is suitable for fieldwork and which enables the measurement of sulphate at high temporal resolution is of great interest. In this study, we present the adaptation of a new continuous flow analysis system for sulphate that is based on a spectrophotometric method using dimethylsulfonazo III and an inline reactor column containing barium sulphate particles. The method shows a detection limit of ∽70 ng g–1 and a linear range up to at least 3000 ng g–1. It is simple, robust and less prone to interferences compared to the previously used method.


2022 ◽  
Author(s):  
Michael Sigl ◽  
Matthew Toohey ◽  
Joseph R. McConnell ◽  
Jihong Cole-Dai ◽  
Mirko Severi

Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).


1994 ◽  
Vol 20 ◽  
pp. 219-225 ◽  
Author(s):  
E.D. Waddington ◽  
D.L. Morse

10m firn temperatures are commonly used on the Antarctic plateau to estimate mean annual air temperatures. 10m firn temperatures measured at Taylor Dome (also referred to as McMurdo Dome in the literature), Antarctica, are influenced by a factor other than altitude and latitude that varies systematically across Taylor Dome. Some inter-related factors possibly contributing to the modern temperature variability are differences in sensible heat from warm or cold air masses, differences in wind strength and source region, differences in temperature inversion strength and differences in cloudiness. Our preliminary data are compatible with spatially variable katabatic winds that could control the winter temperature inversion strength to provide a large part of the signal. This has implications for paleoclimate studies.(1) Variations of the stable isotopes δ18O and δD from ice cores are a proxy for paleotemperature. The isotope thermometer is calibrated by comparing local isotope ratios with corresponding measured temperatures. In order to derive a useful isotope-temperature calibration, we must understand the processes that control the modern spatial variability of temperature. (2) In order to quantify past changes in local climate, we must understand processes that influence local spatial variability. If those processes differed in the past, ice-core climate reconstruction would be affected in two ways: through alteration of the geochemical record and through alteration of deep ice and firn temperatures.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


2021 ◽  
Author(s):  
Bernard Legras ◽  
Hugo Lestrelin ◽  
Aurélien Podglajen ◽  
Mikail Salihoglu

<p>The two most intense wildfires of the last decade that took place in Canada in 2017 and Australia in 2019-2020 were followed by large injections of smoke in the stratosphere due to pyroconvection. It was discovered that, after the Australian event, part of this smoke self-organized as anticyclonic confined vortices that rose against the Brewer-Dobson circulation in the mid-latitude stratosphere up to 35 km (Khaykin et al., 2020, doi: 10.1038/s43247-020-00022-5).  Based on CALIOP lidar observations and the ECMWF ERA5 reanalysis, we analyze the Canadian case and find, similarly, that the large plume which penetrated the stratosphere on 12 August 2017 and reached 14 km got trapped thereafter within a meso-scale anticyclonic structure which travelled across the Atlantic. It then broke into three offsprings that could be followed until mid-October 2017, each performing  round the world journeys and rising up to 23 km for one of them. We analyze the dynamical structure of the vortices produced by these two wildfires in the ERA 5 and demonstrate how they are maintained by the assimilation of data from instruments measuring the signature of the vortices in the temperature and ozone field. We propose that these vortices can be seen as bubbles of very low potential vorticity carried vertically by their internal radiative heating across the stratosphere against the stratification. We will also present elements of a theory and first numerical simulations explaining the dynamics of such structures  and discuss possible occurrences after other forest fires and volcanic eruptions in the past as well as  future likely impacts. This new phenomenon in geophysical fluid mechanics has, to our knowledge, no reported analog (see reference: https://acp.copernicus.org/preprints/acp-2020-1201/).</p>


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


Sign in / Sign up

Export Citation Format

Share Document