scholarly journals Implications of the permanent El Niño teleconnection "blueprint" for past global and North American hydroclimatology

2011 ◽  
Vol 7 (3) ◽  
pp. 723-743 ◽  
Author(s):  
A. Goldner ◽  
M. Huber ◽  
N. Diffenbaugh ◽  
R. Caballero

Abstract. Substantial evidence exists for wetter-than-modern continental conditions in North America during the pre-Quaternary warm climate intervals. This is in apparent conflict with the robust global prediction for future climate change of a northward expansion of the subtropical dry zones that should drive aridification of many semiarid regions. Indeed, areas of expected future aridification include much of western North America, where extensive paleoenvironmental records are documented to have been much wetter before the onset of Quaternary ice ages. It has also been proposed that climates previous to the Quaternary may have been characterized as being in a state with warmer-than-modern eastern equatorial sea surface temperatures (SSTs). Because equatorial Pacific SSTs exert strong controls on midlatitude atmospheric circulation and the global hydrologic cycle, the teleconnected response from this permanent El Niño-like mean state has been proposed as a useful analogue model, or "blueprint", for understanding global climatological anomalies in the past. The present study quantitatively explores the implications of this blueprint for past climates with a specific focus on the Miocene and Pliocene, using a global climate model (CAM3.0) and a nested high-resolution climate model (RegCM3) to study the hydrologic impacts on global and North American climate of a change in mean SSTs resembling that which occurs during modern El Niño events. We find that the global circulation response to a permanent El Niño resembles a large, long El Niño event. This state also exhibits equatorial super-rotation, which would represent a fundamental change to the tropical circulations. We also find a southward shift in winter storm tracks in the Pacific and Atlantic, which affects precipitation and temperature over the mid-latitudes. In addition, summertime precipitation increases over the majority of the continental United States. These increases in precipitation are controlled by shifts in the subtropical jet and secondary atmospheric feedbacks. Based on these results and the data proxy comparison, we conclude that a permanent El Niño like state is one potential explanation of wetter-than-modern conditions observed in paleoclimate-proxy records, particularly over the western United States.

2011 ◽  
Vol 7 (1) ◽  
pp. 199-240
Author(s):  
A. Goldner ◽  
M. Huber ◽  
N. Diffenbaugh ◽  
R. Caballero

Abstract. Substantial evidence exists for wetter-than-modern continental conditions in past warm climates. This is in apparent conflict with the robust global prediction for future climate change of a northward expansion of the subtropical dry zones that should drive aridification of many semiarid regions. Areas of expected aridification include much of Western North America, where extensive paleoenvironmental records from North America point to wetter conditions before the onset of Quaternary ice ages. It has been proposed that climates previous to the early Pliocene may have been characterized as being in a state with warmer-than-modern eastern equatorial sea surface temperatures (SSTs). Because Equatorial Pacific SSTs exert strong controls on midlatitude atmospheric circulation and the global hydrologic cycle, the teleconnected response from this permanent El Niño-like mean state has been proposed as a useful analogue model, or "blueprint", for understanding global climatological and hydrological anomalies in the past. The present study quantitatively explores the implications of this blueprint for past climates, using a global climate model (CAM3.0) and a nested high-resolution climate model (RegCM3) to study the hydrologic impacts of a permanent El Niño on global and North American climate. We find that the global circulation response to a permanent El Niño resembles a large, long El Niño event. However, this state also exhibits equatorial super-rotation, which would represent a fundamental change to the tropical circulations. We also find intensification and southward drift in winter storm tracks in the Pacific, which affects precipitation and temperature over the mid-latitudes via large shifts in atmospheric circulation. In addition, summertime precipitation increases over the majority of the continental United States, with these increases likely controlled by shifts in the subtropical jet and secondary atmospheric feedbacks. Based on these results, we conclude that a permanent El Niño is a good explanation of the Pre-Quaternary wetter-than-modern conditions observed in paleo proxy records, particularly over the Western United States.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Zhou ◽  
Quanliang Chen ◽  
Yang Li ◽  
Yawei Yang ◽  
Shaobo Zhang ◽  
...  

The stratospheric pathway is a major driver of El Niño–Southern Oscillation (ENSO) impacts on mid-latitude tropospheric circulation and winter weather. The weak vortex induced by El Niño conditions has been shown to increase the risk of cold spells, especially over Eurasia, but its role for North American winters is less clear. This study involved idealized experiments with the Whole Atmosphere Community Climate Model to examine how the weak winter vortex induced by extreme El Niño events is linked to North American coldness in spring. Contrary to the expected mid-latitude cooling associated with a weak vortex, extreme El Niño events do not lead to North American cooling overall, with daily cold extremes actually decreasing, especially in Canada. The expected cooling is absent in most of North America because of the advection of warmer air masses guided by an enhanced ridge over Canada and a trough over the Aleutian Peninsula. This pattern persists in spring as a result of the trapping of stationary waves from the polar stratosphere and troposphere, implying that the stratospheric influence on North America is sensitive to regional downward wave activities.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Gerardo Andres Saenz ◽  
Huei-Ping Huang

The projected changes in the downward solar radiation at the surface over North America for late 21st century are deduced from global climate model simulations with greenhouse-gas (GHG) forcing. A robust trend is found in winter over the United States, which exhibits a simple pattern of a decrease of sunlight over Northern USA. and an increase of sunlight over Southern USA. This structure was identified in both the seasonal mean and the mean climatology at different times of the day. It is broadly consistent with the known poleward shift of storm tracks in winter in climate model simulations with GHG forcing. The centennial trend of the downward shortwave radiation at the surface in Northern USA. is on the order of 10% of the climatological value for the January monthly mean, and slightly over 10% at the time when it is midday in the United States. This indicates a nonnegligible influence of the GHG forcing on solar energy in the long term. Nevertheless, when dividing the 10% by a century, in the near term, the impact of the GHG forcing is relatively minor such that the estimate of solar power potential using present-day climatology will remain useful in the coming decades.


2021 ◽  
Author(s):  
Yao Ge ◽  
Dehai Luo

Abstract In recent years, the winter (from December to February, DJF) North American surface air temperature (SAT) anomaly in midlatitudes shows a “warm west/cold east” (WWCE) dipole pattern. To some extent, the winter WWCE dipole can be considered as being a result of the winter mean of sub-seasonal WWCE events. In this paper, the Pacific SST condition linked to the sub-seasonal WWCE SAT dipole is investigated. It is found that while the sub-seasonal WWCE dipole is related to the positive Pacific North American (PNA+) pattern, the impact of the PNA+ on the WWCE dipole depends on the El Niño SST type and the phase of Pacific decadal Oscillation (PDO). For a central-Pacific (CP) type El Niño, the positive (negative) height anomaly center of PNA+ is located in the west (east) part of North America to result in an intensified WWCE dipole, though the positive PDO favors the WWCE dipole. In contrast, the WWCE dipole is suppressed under an Eastern-Pacific (EP) type El Niño because the PNA+ anticyclonic anomaly dominates the whole North America.Moreover, the physical cause of why the type of El Niño influences the PNA+ is further examined. It is found that the type of El Niño can significantly influence the location of PNA+ through changing North Pacific midlatitude westerly winds (NPWWs). For the CP-type El Niño, the eastward migration of PNA+ is suppressed to favor its anticyclonic (cyclonic) anomaly appearing in the west (east) region of North American owing to reduced NPWWs. But for the EP-type El Niño, NPWWs are intensified to cause the appearance of the PNA+ anticyclonic anomaly over the whole North America due to enhanced Hadley cell and Ferrell cell.


2007 ◽  
Vol 20 (14) ◽  
pp. 3580-3601 ◽  
Author(s):  
Yonghua Chen ◽  
Anthony D. Del Genio ◽  
Junye Chen

Abstract Aspects of the tropical atmospheric response to El Niño related to the global energy and water cycle are examined using satellite retrievals from the Tropical Rainfall Measuring Mission and the Advanced Microwave Scanning Radiometer-E and simulations from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The El Niño signal is extracted from climate fields using a linear cross-correlation technique that captures local and remote in-phase and lagged responses. Passive microwave and radar precipitation anomalies for the 1997/98 and 2002/03 El Niños and the intervening La Niña are highly correlated, but anomalies in stratiform–convective rainfall partitioning in the two datasets are not. The GISS GCM produces too much rainfall in general over ocean and too little over land. Its atmospheric response to El Niño is weaker and decays a season too early. Underestimated stratiform rainfall fraction (SRF) and convective downdraft mass flux in the GISS GCM and excessive shallow convective and low stratiform cloud result in latent heating that peaks at lower altitudes than inferred from the data. The GISS GCM also underestimates the column water vapor content throughout the Tropics, which causes it to overestimate outgoing longwave radiation. The response of both quantities to interannual Hadley circulation anomalies is too weak. The GISS GCM’s Walker circulation also exhibits a weak remote response to El Niño, especially over the Maritime Continent and western Indian Ocean. This appears to be a consequence of weak static stability due to the model’s lack of upper-level stratiform anvil heating, excessive low-level heating, and excessive dissipation due to cumulus momentum mixing. Our results suggest that parameterizations of mesoscale updrafts, convective downdrafts, and cumulus-scale pressure gradient effects on momentum transport are keys to a reasonable GISS GCM simulation of tropical interannual variability.


2020 ◽  
Author(s):  
Yao Ge ◽  
Dehai Luo

<p><strong> </strong></p><p>In recent years, the surface air temperature (SAT) anomalies in winter over North America show a “warm-West/cool-East” (WWCE) dipole pattern. The underlying mechanism of the North American WWCE dipole pattern has been an important research topic. This study examines the physical cause of the WWCE dipole generation.</p><p>It is found that the positive phase (PNA<sup>+</sup>) of the Pacific North American (PNA) pattern can lead to the generation of the WWCE SAT dipole. However, the impact of the PNA<sup>+ </sup>on the WWCE SAT dipole over North America depends on the type of the El Nino SST anomaly. When an Eastern-Pacific (EP) type El Nino occurs, the anticyclonic anomaly center of the PNA<sup>+ </sup>over the North American continent is displaced eastward near 100°W due to intensified midlatitude westerly winds over North Pacific so that its anticyclonic anomaly dominates the whole North America. In this case, the cyclonic anomaly of the PNA<sup>+</sup> almost disappears over the North America. Thus, the WWCE SAT dipole over the North America is weakened. In contrast, when a central-Pacific (CP) type El Nino appears, the anticyclonic anomaly center of the associated PNA<sup>+</sup> is located over the North America west coast due to reduced midlatitude westerly winds over North Pacific. As a result, the cyclonic anomaly of the PNA<sup>+</sup> can appear over the east United States to result in an intensified WWCE SAT dipole over the North America</p>


Climate ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 72 ◽  
Author(s):  
Knut Seip ◽  
Hui Wang

Ocean oscillations interact across large regions and these interactions may explain cycles in global temperature anomaly, including hiatus periods. Here, we examine ocean interaction measures and compare results from model simulations to observations for El Niño and the Pacific decadal oscillation (PDO). We use the global climate model of the Met Office Hadley Centre. A relatively novel method for identifying running leading-agging LL-relations show that the observed El Niño generally leads the observed PDO and this pattern is strengthened in the simulations. However, LL-pattern in both observations and models shows that there are three periods, around 1910–1920, around 1960 and around 2000 where El Niño lags PDO, or the leading signature is weak. These periods correspond to hiatus periods in global warming. The power spectral density analysis, (PSD), identifies various ocean cycle lengths in El Niño and PDO, but the LL-algorithm picks out common cycles of 7–8 and 24 years that shows leading-lagging relations between them.


2013 ◽  
Vol 9 (2) ◽  
pp. 903-912 ◽  
Author(s):  
M. J. Winnick ◽  
J. M. Welker ◽  
C. P. Chamberlain

Abstract. Understanding how the hydrologic cycle has responded to warmer global temperatures in the past is especially important today as concentrations of CO2 in the atmosphere continue to increase due to human activities. The Pliocene offers an ideal window into a climate system that has equilibrated with current atmospheric pCO2. During the Pliocene the western United States was wetter than modern, an observation at odds with our current understanding of future warming scenarios, which involve the expansion and poleward migration of the subtropical dry zone. Here we compare Pliocene oxygen isotope profiles of pedogenic carbonates across the western US to modern isotopic anomalies in precipitation between phases of the El Niño–Southern Oscillation (ENSO). We find that when accounting for seasonality of carbonate formation, isotopic changes through the late Pliocene match modern precipitation isotopic anomalies in El Niño years. Furthermore, isotopic shifts through the late Pliocene mirror changes through the early Pleistocene, which likely represents the southward migration of the westerly storm track caused by growth of the Laurentide ice sheet. We propose that the westerly storm track migrated northward through the late Pliocene with the development of the modern cold tongue in the east equatorial Pacific, then returned southward with widespread glaciation in the Northern Hemisphere – a scenario supported by terrestrial climate proxies across the US. Together these data support the proposed existence of background El Niño-like conditions in western North America during the warm Pliocene. If the earth behaves similarly with future warming, this observation has important implications with regard to the amount and distribution of precipitation in western North America.


2017 ◽  
Author(s):  
Giuliana Turi ◽  
Michael Alexander ◽  
Nicole S. Lovenduski ◽  
Antonietta Capotondi ◽  
James Scott ◽  
...  

Abstract. We use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold El Niño/Southern Oscillation (ENSO) events on the physics and biogeochemistry of the California Current System (CalCS). We focus on the effect of ENSO on variations in the O2 concentration and the pH of the coastal waters of the CalCS. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ~100 m. The strongest O2 response reaches up to several 100 km offshore, whereas the pH signal occurs only within a ~100 km-wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ~100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.


2021 ◽  
Author(s):  
Yao Ge ◽  
Dehai Luo

Abstract In recent years, the winter (from December to February, DJF) North American surface air temperature (SAT) anomaly in midlatitudes shows a “warm west/cold east” (WWCE) dipole pattern. To some extent, the winter WWCE dipole can be considered as being a result of the winter mean of sub-seasonal WWCE events. In this paper, the Pacific SST condition linked to the WWCE SAT dipole is investigated. It is found that while the sub-seasonal WWCE dipole is related to the positive Pacific North American (PNA+) pattern, the impact of the PNA+ on the WWCE dipole depends on the El Niño SST type and the phase of Pacific decadal Oscillation (PDO). For a central-Pacific (CP) type El Niño, the positive (negative) height anomaly center of PNA+ is located in the western (eastern) North America to result in an intensified WWCE dipole, though the positive PDO favors the WWCE dipole. In contrast, the WWCE dipole is suppressed under an Eastern-Pacific (EP) type El Niño because the PNA+ anticyclonic anomaly dominates the whole North America. Moreover, the physical cause of why the El Niño type influences PNA+ is further examined. It is found that the type of El Niño can significantly influence the location of PNA+ through changing North Pacific midlatitude westerly winds associated with the Pacific Hadley cell change. For the CP-type El Niño, the eastward migration of PNA+ is suppressed to favor its anticyclonic (cyclonic) anomaly appearing in the west (east) region of North American owing to reduced midlatitude westerly winds. But for the EP-type El Niño, midlatitude westerly wind is intensified to cause the appearance of PNA+ anticyclonic anomaly over the whole North America due to enhanced Hadley cell.


Sign in / Sign up

Export Citation Format

Share Document