Experimental analysis of segregation in granular flows

Author(s):  
Silvia D'Agostino

<p>Natural granular flows have a widely dispersed grain size distribution. The majority of the numerical models and laboratory investigations of granular flows are developed assuming a single grain size. However, the geophysical massive flows involve several classes of particles and the bulk solid evolves spatially in a non-uniform state [1]. Segregation causes a different spatial distribution of the particles and influences the kinematic of the bulk solid, like the concentration, the run-out, the velocity and the granular temperature. During the flow motion, the largest particles are found at the surface due to the imbalances in the contact forces, and the smallest at the bottom as they percolate due to gravity [2].</p><p>To investigate the physical processes responsible of the particles transfer, we conducted a series of laboratory experiments, using two different grain size classes to reproduce the binary mixture. The measured data are required to calibrate the mathematical model and to set the coefficients that describe the percolation and the kinetic sieving mechanism. The experiments to study the free surface flow started considering the dry condition. Two different type of classes of particles flow over a loose deposit in homogenous and steady conditions. We used spherical particles of non-expanded polystyrene with a density of 1035 kg/m<sup>3</sup>. The small beads are black with a mean diameter of 0.00075 m and the large beads are white with a mean diameter of 0.0014 m. At the end of the flume there is a weir with two openings. The material is manually inserted and flow in the flume, it is then recirculated by an auger and finally conveyed in a hopper, from where it falls down in the chute again. The system works for at least 30 minutes, after reaching the steady condition.</p><p>The measurements were taken through a high speed camera in a section lateral to the flume. The flow field was measured with an optical method, that gives the velocity, the concentration and the granular temperature for both the small and the large particles, from the sidewalls.</p><p>Analyzing the experimental data, as regards the longitudinal velocity, it is possible to observe that the velocities of the two classes are similar and the large particles flow a bit faster. In contrast, there is a strong segregation in the concentration rates. After the running time, segregation causes the separation of the two classes: the largest classes are in the upper part and the smallest fraction at the bottom.</p><p> </p><p>References</p><p>1 Drahun J.A., Bridgwater J. The mechanisms of free surface segregation, Powder Technology, 36, 39-53, 1988.</p><p>2 Savage S., Lun K.K. Particle size segregation in inclined chute of dry cohesionless granular solids, Journal of Fluid Mechanics, 189, 311-335, 1988.</p><p> </p>

2021 ◽  
Author(s):  
Chien-Cheng Hung ◽  
Andre Niemeijer ◽  
Amir Raoof ◽  
Thomas Swijen

<p>We used three-dimensional numerical simulations of the discrete element method (DEM) to investigate slip localization in sheared granular faults under seismic velocities. An aggregate of non-destructive spherical particles with assigned contact properties is subjected to direct shear with periodic boundary in horizontal directions. To investigate whether particle size distribution (PSD) influences slip accommodation, three distinct PSDs, namely Gaussian, log-normal, and power-law with fractal dimension D ranging from 0.8 to 2.6, are employed. In additional simulations, we impose a thin layer of particles with smaller grain size along the boundary as well as in the middle of the granular assemblages to simulate boundary and Y shears occurring in both natural and laboratory fault gouges. Transient microscopic properties, such as particle motion and contact forces, as well as macroscopic properties, such as friction, of the granular layer, are continuously monitored during numerical shearing. Results show that no visible slip localization is observed for all different PSDs based on the current particle motion analysis. On the other hand, we find that much more strain (i.e., displacement) is accommodated in the finer-grained layer even with a small contrast in grain size. Up to 90 % of the displacement is localized in a finer-grained layer when the contrast ratio of the grain size is 50 %. Since more frictional heat will be generated in the localized slip zone, the results provide crucial information on the heat generation and associated slip accommodation in sheared gouge zones. A possible mechanism of slip localization in the simulations is the transfer of the momentum across the granular system. We conclude that the occurrence of a weaker, fine-grained layer within a dense fault zone is likely to result in self-enhanced weakening of the fault planes.  Ongoing work includes (1) varying the thickness, grain size, and internal friction of the thinner layer; (2) applying triangulation methods to further analyze the microscale stress and strain tensor between particles; (3) changing the rolling friction of particles.</p>


2020 ◽  
Author(s):  
Alexandre Valance ◽  
Renaud Delannay ◽  
Aurelien Neveu

<p align="JUSTIFY">Classically, for free surface flows of binary granular mixture, large particles migrate at the top of the flow while small ones percolate to the bottom. The key mechanisms at the origin of this segregation behavior have been identified as a combination of squeeze expulsion and kinetic sieving (Savage & Lun J. Fluid Mech. 1988). In this case, the segregation process is governed by the gravity. We <span>discovered</span> here by means of numerical simulations a new segregation pattern in high speed granular flows where size segregation is driven mostly by granular temperature gradients rather than gravity, which highlight the complexity of providing a complete description of segregation processes.</p><p align="JUSTIFY">High speed granular flows are obtained by means of discrete numerical simulations (DEM) in a confined geometry with lateral frictional side-walls. Recently, Brodu et al. (Phys. Rev. E 2013, J. Fluid Mech. 2015) highlighted that this confined geometry allows to produce steady and fully-developed flows at relatively high angles of inclination, including a rich and broad variety of new regimes. In particular, they showed the existence of supported regimes, characterized by a dense and cold (in terms of granular temperature) core floating over a dilute and highly agitated layer of grains, accompanied with longitudinal convection rolls.</p><p align="JUSTIFY">We performed extensive numerical simulations within this geometry with binary mixture of spheres with a given size ratio of 2. We analyzed segregation patterns of steady and fully-developed flows for inclination angles ranging from 18° to 50° and various mixture proportions of large particles ranging from 0 to 100%. We evidenced a new segregation pattern that emerge in the supported flow regimes: large particles no longer accumulate in the upper layers of the flow but are trapped in the dense core and localized at the center of the convection rolls. The strong temperature gradients that develop between the dense core and the surrounding dilute layer seem to govern the segregation mechanism. The accumulation of large particles in the dense core, which is the fastest region of the flow, also tends to enhance the total mass flux in comparison with similar mono-disperse flows.</p>


Soft Matter ◽  
2021 ◽  
Author(s):  
Riccardo Artoni ◽  
Michele Larcher ◽  
James T. Jenkins ◽  
Patrick Richard

The self-diffusivity tensor in homogeneously sheared dense granular flows is anisotropic. We show how its components depend on solid fraction, restitution coefficient, shear rate, and granular temperature.


2007 ◽  
Vol 129 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Lapo F. Mori ◽  
Neil Krishnan ◽  
Jian Cao ◽  
Horacio D. Espinosa

In this paper, the results of experiments conducted to investigate the friction coefficient existing at a brass-steel interface are presented. The research discussed here is the second of a two-part study on the size effects in friction conditions that exist during microextrusion. In the regime of dimensions of the order of a few hundred microns, these size effects tend to play a significant role in affecting the characteristics of microforming processes. Experimental results presented in the previous companion paper have already shown that the friction conditions obtained from comparisons of experimental results and numerical models show a size effect related to the overall dimensions of the extruded part, assuming material response is homogeneous. Another interesting observation was made when extrusion experiments were performed to produce submillimeter sized pins. It was noted that pins fabricated from large grain-size material (211μm) showed a tendency to curve, whereas those fabricated from billets having a small grain size (32μm), did not show this tendency. In order to further investigate these phenomena, it was necessary to segregate the individual influences of material response and interfacial behavior on the microextrusion process, and therefore, a series of frictional experiments was conducted using a stored-energy Kolsky bar. The advantage of the Kolsky bar method is that it provides a direct measurement of the existing interfacial conditions and does not depend on material deformation behavior like other methods to measure friction. The method also provides both static and dynamic coefficients of friction, and these values could prove relevant for microextrusion tests performed at high strain rates. Tests were conducted using brass samples of a small grain size (32μm) and a large grain size (211μm) at low contact pressure (22MPa) and high contact pressure (250MPa) to see whether there was any change in the friction conditions due to these parameters. Another parameter that was varied was the area of contact. Static and dynamic coefficients of friction are reported for all the cases. The main conclusion of these experiments was that the friction coefficient did not show any significant dependence on the material grain size, interface pressure, or area of contact.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2018 ◽  
Vol 615 ◽  
pp. A20 ◽  
Author(s):  
Wasim Iqbal ◽  
Valentine Wakelam

Context. Species abundances in the interstellar medium (ISM) strongly depend on the chemistry occurring at the surfaces of the dust grains. To describe the complexity of the chemistry, various numerical models have been constructed. In most of these models, the grains are described by a single size of 0.1 μm. Aims. We study the impact on the abundances of many species observed in the cold cores by considering several grain sizes in the Nautilus multi-grain model. Methods. We used grain sizes with radii in the range of 0.005 μm to 0.25 μm. We sampled this range in many bins. We used the previously published, MRN and WD grain size distributions to calculate the number density of grains in each bin. Other parameters such as the grain surface temperature or the cosmic-ray-induced desorption rates also vary with grain sizes. Results. We present the abundances of various molecules in the gas phase and also on the dust surface at different time intervals during the simulation. We present a comparative study of results obtained using the single grain and the multi-grain models. We also compare our results with the observed abundances in TMC-1 and L134N clouds. Conclusions. We show that the grain size, the grain size dependent surface temperature and the peak surface temperature induced by cosmic ray collisions, play key roles in determining the ice and the gas phase abundances of various molecules. We also show that the differences between the MRN and the WD models are crucial for better fitting the observed abundances in different regions in the ISM. We show that the small grains play a very important role in the enrichment of the gas phase with the species which are mainly formed on the grain surface, as non-thermal desorption induced by collisions of cosmic ray particles is very efficient on the small grains.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4563
Author(s):  
Yu Hou ◽  
Xujun Mi ◽  
Haofeng Xie ◽  
Wenjing Zhang ◽  
Guojie Huang ◽  
...  

The size (grain size and specimen size) effect makes traditional macroscopic forming technology unsuitable for a microscopic forming process. In order to investigate the size effect on mechanical properties and deformation behavior, pure copper wires (diameters range from 50 μm to 500 μm) were annealed at different temperatures to obtain different grain sizes. The results show that a decrease in wire diameter leads to a reduction in tensile strength, and this change is pronounced for large grains. The elongation of the material is in linear correlation to size factor D/d (diameter/grain size), i.e., at the same wire diameter, more grains in the section bring better plasticity. This phenomenon is in relationship with the ratio of free surface grains. A surface model combined with the theory of single crystal and polycrystal is established, based on the relationship between specimen/grain size and tensile property. The simulated results show that the flow stress in micro-scale is in the middle of the single crystal model (lower critical value) and the polycrystalline model (upper critical value). Moreover, the simulation results of the hybrid model calculations presented in this paper are in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document