Eoarchean tectono-metamorphic signatures recorded on the Isua Supracrustal Belt

Author(s):  
Anthony Ramírez-Salazar ◽  
Thomas Mueller ◽  
Sandra Piazolo ◽  
Alexander Webb ◽  
Christoph Hauzenberger ◽  
...  

<p>The Eoarchean Isua Supracrustal Belt (ISB) is one of the few locations where it is possible to study the tectono-metamorphic evolution of a young planet. The ISB is thought to represent meta-volcano-sedimentary units from two different embryotic continental segments/terranes associated with two large TTG bodies of contrasting crystallization age. Until recently, geochemical and metamorphic signatures have been interpreted to be consistent with a subduction-collision event, thereby matching Earth’s active ‘horizontal’ tectonic regime. This interpretation is often cited as evidence that plate tectonics has operated since the Early Archean. New structural, field, isotopic and geochemical data, however, suggest that the ISB is rather a continuous volcano-sedimentary sequence with a rock record that could be explained by ‘vertical’ tectonic models involving extensive volcanic resurfacing and single-plate tectonics. In this work, we present metamorphic data retrieved from a new set of samples from the eastern ISB to evaluate the two contrasting hypotheses. Throughout the ISB, two major Archean medium grade metamorphic events (M<sub>1</sub>, M<sub>2</sub>) can be identified, overprinted partially by near-pervasive low-temperature retrogression. The pre-Ameralik dykes (≈ 3500 Ma) event M<sub>1</sub>, is characterized by a strong foliation and typically lineation that plunges towards the SE with development of amphibolite facies assemblages, with common appearance of syn-tectonic garnet and amphibole porphyroblasts. Phase equilibria modelling, classic and isopleth geothermobarometry show that M<sub>1</sub> evolved as a nearly isothermal prograde metamorphism that culminated in an amphibolite facies peak (0.65 GPa and 550-580 °C) common to the entire belt. M<sub>2</sub>, probably Neoarchean in age, is identified by the frequent appearance of post-tectonic garnet rims with estimated lower grade conditions. Low temperature retrogression is widespread along the ISB, however, it seems more penetrative in the northern area occurring as garnet pseudomorphism and retrograde chlorite commonly mimicking the foliation by replacing biotite, with some samples showing complete chloritization. We argue that the retrogression textures could be responsible for the apparent zones of lower metamorphism previously reported as prograde, a conclusion also supported by our geothermobarometric data, and that the tectonic models supported by previuos interpretations need to be revised. The isothermal prograde path as well as the high geothermal gradient associated with peak conditions (≈ 900 °C/GPa) is consistent with vertical tectonics models during the Eoarchean. This interpretation is in agreement with global data analysis that suggest non-uniformitarian geodynamics in the Early Archean, as well as the viability of early vertical tectonics on the other terrestrial bodies of our solar system. It follows that studies like this can shed light on not just the cooling of early Earth, but also on the cooling of terrestrial planets universally.</p>

2020 ◽  
Author(s):  
Jiawei Zuo ◽  
Alex Webb ◽  
Jason Harvey ◽  
Peter Haproff ◽  
Thomas Mueller ◽  
...  

<p>The initiation of plate tectonics remains enigmatic, with the proposed onset timing ranging from Hadean to Proterozoic. Recently, many mineralogical, petrological and geochemical studies suggest onset of plate tectonics at ~3 Ga. For example, the geology of East Pilbara Terrane (~3.55 to 2.70 Ga; Australia) is widely interpreted as representing Paleoarchean non-plate tectonics, followed by plate tectonics after a ~3.2 Ga transition. In contrast, Isua supracrustal belt (3.85 to 3.55 Ga; Greenland) has been dominantly interpreted via plate tectonics. There, two ultramafic lenses have been interpreted as depleted mantle slices, emplaced via thrusting in an Eoarchean subduction zone, implying early plate tectonics. We present new petrological and geochemical data of ultramafic samples from the Isua lenses and from the East Pilbara Terrane to explore their origins. Pilbara samples appear to preserve cumulate textures; protolith textures of Isua samples are altered beyond recognition. Samples with low chemical alteration show similar whole-rock chemistry, including up to 5.0 wt.% Al<sub>2</sub>O<sub>3</sub> and up to 0.25 wt.% TiO<sub>2</sub> that both covary negatively with MgO (37.1 to 47.5 wt.%); these variations suggest cogenetic relationships with local lavas. Flat trace-element fractionation trends parallel those of local lavas in the primitive-mantle normalized spider diagram. Spinel crystals from Pilbara samples yield ~20-60 Mg#, relatively constant Cr# at ~70, and 0.61-4.81 wt.% TiO<sub>2</sub>. Our data are consistent with crustal cumulate emplacement. In contrast with depleted mantle rocks, our samples have higher whole-rock Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>, flat (vs. upward) trace-element fractionation trends from less to more compatible elements, and spinel crystals with higher TiO<sub>2</sub> and relatively constant (vs. varied) Cr#. Therefore, Isua and Pilbara ultramafic rocks may have similar, non-plate tectonic origins, and the Isua record allows a ~3 Ga onset of plate tectonics.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javad Nouraliee ◽  
Davar Ebrahimi ◽  
Ali Dashti ◽  
Maziar Gholami Korzani ◽  
Sepehr Sangin

AbstractMahallat Geothermal Region, located in the central part of Iran, is known as one of the largest low-temperature geothermal fields. In this study, Mahallat geothermal resource has been evaluated based on integrated geological, geochemical and geophysical analyses. Gravity data revealed three major negative anomaly zones. Based on the geochemical analyses, quartz geothermometers are more reliable than others and confirmed that the reservoir is about 90 °C. Lithological properties of Jurassic layers and high sulphate content observed in geochemical data showed traces of the coal-rich layers on the hot fluids. Measured temperatures in 7 boreholes with the depths ranging from 50 to 100 m, have proposed that expected geothermal gradient will be about 81.5 °C/km. Among all drilled boreholes, the data coming from only one resulted in this almost reliable gradient. Other boreholes are clearly too shallow or affected by upflow or downflow of water along existing faults. Geological, geochemical, gravity and measurements of drilled boreholes suggested the existence of a shallow reservoir with an approximate temperature of 90 °C. Regarding gravity and observed faults, geothermal reservoir is elongated parallel to one of the main faults of the region with NE-SW strike.


2021 ◽  
Vol 124 (1) ◽  
pp. 141-162 ◽  
Author(s):  
J.F. Dewey ◽  
E.S. Kiseeva ◽  
J.A. Pearce ◽  
L.J. Robb

Abstract Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.


2021 ◽  
Author(s):  
Samuel Boone ◽  
Fabian Kohlmann ◽  
Moritz Theile ◽  
Wayne Noble ◽  
Barry Kohn ◽  
...  

<p>The AuScope Geochemistry Network (AGN) and partners Lithodat Pty Ltd are developing AusGeochem, a novel cloud-based platform for Australian-produced geochemistry data from around the globe. The open platform will allow laboratories to upload, archive, disseminate and publish their datasets, as well as perform statistical analyses and data synthesis within the context of large volumes of publicly funded geochemical data. As part of this endeavour, representatives from four Australian low-temperature thermochronology laboratories (University of Melbourne, University of Adelaide, Curtin University and University of Queensland) are advising the AGN and Lithodat on the development of low-temperature thermochronology (LTT)-specific data models for the relational AusGeochem database and its international counterpart, LithoSurfer. These schemas will facilitate the structured archiving of a wide variety of thermochronology data, enabling geoscientists to readily perform LTT Big Data analytics and gain new insights into the thermo-tectonic evolution of Earth’s crust.</p><p>Adopting established international data reporting best practices, the LTT expert advisory group has designed database schemas for the fission track and (U-Th-Sm)/He methods, as well as for thermal history modelling results and metadata. In addition to recording the parameters required for LTT analyses, the schemas include fields for reference material results and error reporting, allowing AusGeochem users to independently perform QA/QC on data archived in the database. Development of scripts for the automated upload of data directly from analytical instruments into AusGeochem using its open-source Application Programming Interface are currently under way.</p><p>The advent of a LTT relational database heralds the beginning of a new era of Big Data analytics in the field of low-temperature thermochronology. By methodically archiving detailed LTT (meta-)data in structured schemas, intractably large datasets comprising 1000s of analyses produced by numerous laboratories can be readily interrogated in new and powerful ways. These include rapid derivation of inter-data relationships, facilitating on-the-fly age computation, statistical analysis and data visualisation. With the detailed LTT data stored in relational schemas, measurements can then be re-calculated and re-modelled using user-defined constants and kinetic algorithms. This enables analyses determined using different parameters to be equated and compared across regional- to global scales.</p><p>The development of this novel tool heralds the beginning of a new era of structured Big Data in the field of low-temperature thermochronology, improving laboratories’ ability to manage and share their data in alignment with FAIR data principles while enabling analysts to readily interrogate intractably large datasets in new and powerful ways.</p>


2021 ◽  
Author(s):  
David T. Sandwell

David Sandwell developed this advanced textbook over a period of nearly 30 years for his graduate course at Scripps Institution of Oceanography. The book augments the classic textbook Geodynamics by Don Turcotte and Jerry Schubert, presenting more complex and foundational mathematical methods and approaches to geodynamics. The main new tool developed in the book is the multi-dimensional Fourier transform for solving linear partial differential equations. The book comprises nineteen chapters, including: the latest global data sets; quantitative plate tectonics; plate driving forces associated with lithospheric heat transfer and subduction; the physics of the earthquake cycle; postglacial rebound; and six chapters on gravity field development and interpretation. Each chapter has a set of student exercises that make use of the higher-level mathematical and numerical methods developed in the book. Solutions to the exercises are available online for course instructors, on request.


2013 ◽  
Vol 47 (1) ◽  
pp. 449
Author(s):  
B. Tsikouras ◽  
G. Etiope ◽  
E. Ifandi ◽  
S. Kordella ◽  
G. Papatheodorou ◽  
...  

Altered mafic and ultramafic rocks were studied in correspondence with hyperalkaline, CH4-bearing and very low-hydrogen spring waters in the Othrys ophiolite, whose chemical features are typical of present day serpentinisation. The H2 paucity is interpreted as the result of the incorporation of high-silica, aqueous fluids, probably derived from mafic rocks. The vein assemblage of serpentine + magnetite is related to circulation of low-silica fluids whereas serpentine + talc, tremolite after garnet and Fe-rich serpentine in the interior of serpentine veins reflect a late circulation of low-temperature (likely below 120 °C), high silica activity fluids. The highsilica conditions might have limited or interrupted the production of H2, which was subsequently consumed by CO2 hydrogenation to produce CH4. The lack of H2 could also be due to peridotite alteration by CO2-rich fluids. This would imply that the Othrys peridotites, among similar methane-bearing peridotites, may be considered as terrestrial analogues of Martian ultramafic rocks, which are thought to contribute to methane emission in the atmosphere of Mars. Understanding the mechanism of methane abiotic production will likely shed light to the details of some crucial aspects as the greenhouse-gas budget, the production of hydrocarbons and the origin of life on Earth.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Vladimir Cermak ◽  
Alan Beck ◽  
Valiya Hamza

The study of the earth's internal heat plays an important role in understanding the Earth's origin, internal constitution, and plate tectonics. The outflow of heat from the Earth's interior is, energy-wise, the most impressive terrestrial phenomenon. The present rate of heat loss is estimated to be about 1021 joules per year, which is orders of magnitude greater than the energy dissipation of earthquakes or heat loss from volcanic eruptions. Knowledge of terrestrial heat flow is essential in investigating the internal thermal field of the Earth. Initially focus has been on measurements of underground temperatures and thermal properties of geologic materials, assessment of sources and sinks of heat, institution of global data base, development of thermal models of crust and qualification of geothermal energy resources. During later stages, other implications of heat flow studies has also been recognized in fields such as paleoclimatology, global warming, exploration geophysics and hydrogeology. The International Heat Flow Commission – IHFC plays a guiding role in development of such investigations.


1985 ◽  
Vol 49 (350) ◽  
pp. 77-79 ◽  
Author(s):  
Bruce W. D. Yardley

AbstractMicroprobe analyses of the halogen contents of apatites from two samples of amphibolite-facies schist from Connemara, Ireland, have been used to calculate the fugacity ratios fHCl/fH2O and fHF/fH2O using the experimental data of Korzhinskiy. The results imply fugacities for both acids in the range 0.03 to 0.1 bars, but whereas for the lower grade rock fHF > fHCl, the migmatitic sample gives fHF⋍fHCl. An independent estimate of fHF/fH2O from the biotite composition in one sample is in acceptable agreement with the result obtained from apatite.


2019 ◽  
Vol 61 (2) ◽  
pp. 416-426 ◽  
Author(s):  
Lu Zhou ◽  
Yongjun He ◽  
Jing Li ◽  
Yang Liu ◽  
Huoying Chen

Abstract Eggplant is rich in anthocyanins. R2R3-MYB transcription factors play a key role in the anthocyanin pathway. Low temperature is vital abiotic stress that affects the anthocyanin biosynthesis in plants. CBFs (C-repeat binding factors) act as central regulators in cold response. In this study, we found that SmCBF1, SmCBF2 and SmCBF3, via their C-terminal, physically interacted with SmMYB113, a key regulator of anthocyanin biosynthesis in eggplant. SmCBF2 and SmCBF3 upregulated the expression of SmCHS and SmDFR via a SmMYB113-dependent pathway. In addition, the transient expression assays demonstrated that co-infiltrating SmCBFs and SmMYB113 significantly improved the contents of anthocyanin and the expression levels of anthocyanin structural genes in tobacco. When SmTT8, a bHLH partner of SmMYB113, coexpressed with SmCBFs and SmMYB113, the anthocyanin contents were significantly enhanced compared with SmCBFs and SmMYB113. Furthermore, overexpression of SmCBF2 and SmCBF3 could facilitate the anthocyanin accumulation under cold conditions in Arabidopsis. Taken together, these results shed light on the functions of SmCBFs and potential mechanisms of low-temperature-induced anthocyanin biosynthesis in eggplant.


Sign in / Sign up

Export Citation Format

Share Document