CBFs Function in Anthocyanin Biosynthesis by Interacting with MYB113 in Eggplant (Solanum melongena L.)

2019 ◽  
Vol 61 (2) ◽  
pp. 416-426 ◽  
Author(s):  
Lu Zhou ◽  
Yongjun He ◽  
Jing Li ◽  
Yang Liu ◽  
Huoying Chen

Abstract Eggplant is rich in anthocyanins. R2R3-MYB transcription factors play a key role in the anthocyanin pathway. Low temperature is vital abiotic stress that affects the anthocyanin biosynthesis in plants. CBFs (C-repeat binding factors) act as central regulators in cold response. In this study, we found that SmCBF1, SmCBF2 and SmCBF3, via their C-terminal, physically interacted with SmMYB113, a key regulator of anthocyanin biosynthesis in eggplant. SmCBF2 and SmCBF3 upregulated the expression of SmCHS and SmDFR via a SmMYB113-dependent pathway. In addition, the transient expression assays demonstrated that co-infiltrating SmCBFs and SmMYB113 significantly improved the contents of anthocyanin and the expression levels of anthocyanin structural genes in tobacco. When SmTT8, a bHLH partner of SmMYB113, coexpressed with SmCBFs and SmMYB113, the anthocyanin contents were significantly enhanced compared with SmCBFs and SmMYB113. Furthermore, overexpression of SmCBF2 and SmCBF3 could facilitate the anthocyanin accumulation under cold conditions in Arabidopsis. Taken together, these results shed light on the functions of SmCBFs and potential mechanisms of low-temperature-induced anthocyanin biosynthesis in eggplant.

2021 ◽  
Vol 11 ◽  
Author(s):  
Gui-Ming Deng ◽  
Sen Zhang ◽  
Qiao-Song Yang ◽  
Hui-Jun Gao ◽  
Ou Sheng ◽  
...  

Anthocyanins spatiotemporally accumulate in certain tissues of particular species in the banana plant, and MYB transcription factors (TFs) serve as their primary regulators. However, the precise regulatory mechanism in banana remains to be determined. Here, we report the identification and characterization of MaMYB4, an R2R3-MYB repressor TF, characterized by the presence of EAR (ethylene-responsive element binding factor–associated amphiphilic repression) and TLLLFR motifs. MaMYB4 expression was induced by the accumulation of anthocyanins. Transgenic banana plants overexpressing MaMYB4 displayed a significant reduction in anthocyanin compared to wild type. Consistent with the above results, metabolome results showed that there was a decrease in all three identified cyanidins and one delphinidin, the main anthocyanins that determine the color of banana leaves, whereas both transcriptome and reverse transcription–quantitative polymerase chain reaction analysis showed that many key anthocyanin synthesis structural genes and TF regulators were downregulated in MaMYB4 overexpressors. Furthermore, dual-luciferase assays showed that MaMYB4 was able to bind to the CHS, ANS, DFR, and bHLH promoters, leading to inhibition of their expression. Yeast two-hybrid analysis verified that MaMYB4 did not interact with bHLH, which ruled out the possibility that MaMYB4 could be incorporated into the MYB-bHLH-WD40 complex. Our results indicated that MaMYB4 acts as a repressor of anthocyanin biosynthesis in banana, likely due to a two-level repression mechanism that consists of reduced expression of anthocyanin synthesis structural genes and the parallel downregulation of bHLH to interfere with the proper assembly of the MYB-bHLH-WD40 activation complex. To the best of our knowledge, this is the first MYB TF that regulates anthocyanin synthesis that was identified by genetic methods in bananas, which will be helpful for manipulating anthocyanin coloration in banana programs in the future.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlan Piao ◽  
Jinguo Wu ◽  
Min-Long Cui

AbstractAnthocyanins are the largest group of water-soluble pigments and beneficial for human health. Although most plants roots have the potential to express natural biosynthesis pathways required to produce specialized metabolites such as anthocyanins, the anthocyanin synthesis is specifically silenced in roots. To explore the molecular mechanism of absence and production ability of anthocyanin in the roots, investigated the effect of a bHLH gene AmDelila, and an R2R3-MYB gene AmRosea1, which are the master regulators of anthocyanin biosynthesis in Antirrhinum majus flowers, by expressing these genes in transformed hairy roots of A. majus. Co-ectopic expression of both AmDelila and AmRosea1 significantly upregulated the expression of the key target structural genes in the anthocyanin biosynthesis pathway. Furthermore, this resulted in strongly enhanced anthocyanin accumulation in transformed hairy roots. Ectopic expression of AmDelila alone did not gives rise to any significant anthocyanin accumulation, however, ectopic expression of AmRosea1 alone clearly upregulated expression of the main structural genes as well as greatly promoted anthocyanin accumulation in transformed hairy roots, where the contents reached 0.773–2.064 mg/g fresh weight. These results suggest that AmRosea1 plays a key role in the regulatory network in controlling the initiation of anthocyanin biosynthesis in roots, and the combination of AmRosea1 and hairy root culture is a powerful tool to study and production of anthocyanins in the roots of A. majus.


2021 ◽  
Author(s):  
Xuemei Bao ◽  
Yuan Zong ◽  
Na Hu ◽  
Shiming Li ◽  
Baolong Liu ◽  
...  

Abstract Background Nitraria sibirica Pall. is an economic plant with two kinds of fruit color, widely spreads in the Qinghai Tibet Plateau. The chemical analysis and pharmacological evaluation had been carried out for several tens of years, the mechanism behind the fruit color differentiation is still unclear. Results In this manuscript, the chemical analysis of the extractions showed that the chemical composition of fruit color was anthocyanin, and two kind of Nitraria sibirica Pall. were caused by the content differentiation with the same anthocyanin kinds. Cya-nidin-3-[2ʹ’-(6ʹ’’-coumaroyl)-glucosyl]-glucoside (C3G) was the major anthocyanin. Transcriptome analysis and the qRT-PCR revealed that the structural genes relative to anthocyanin biosynthesis except CHS, F3’5’H and ANS were up-regulated in BF compared with RF, which indicated that transcript factor should be the reason for the expression difference of the structure genes. In the unigenes of the transcript factor MYB and bHLH, relative to anthocyanin, only NsMYB1 (Clus-ter-8422.10600), was high-expression and up-expression in the BF. NsMYB1 encoded the same length protein with four amino acid differences in the RF and BF, and both contained the intact DNA, HTH-MYB and SANT domains. NsMYB1 was close to the AtMYB114, AtMYB113 and AtPAP1, regulating anthocyanin biosynthesis, in phylogenetic relationship. Both NsMYB1r and NsMYB1b could promote the transcript of the structural genes, and induced the anthocyanin accumulation in all tissues of transgenic tobacco. The insertion of ‘TATA’ in the promoter of NsMYB1r gave one more promoter region, and was the reason for higher transcripts in black fruit possibly. Conclusions NsMYB1 was a functional R2R3-MYB transcription factor, regulated the anthocyanin biosynthesis, and leaded to the fruit color differentiation in Nitraria sibirica Pall.


Author(s):  
Yongjun He ◽  
DaLu Li ◽  
ShaoHang Li ◽  
Yang Liu ◽  
Huoying Chen

Abstract Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. It has been reported that BICs (blue light inhibitors of Cryptochromes) act as negative regulators in light signal transduction, but little is known about their role in anthocyanin biosynthesis. In this study, yeast one-hybrid analysis showed that SmBICs could bind to the promoter of SmCHS, indicating that they could directly participate in eggplant anthocyanin biosynthesis. In SmBICs-silenced eggplants, more anthocyanins were accumulated, while SmBIC1-OE and SmBIC2-OE Arabidopsis and eggplants synthesized less anthocyanin. qRT-PCR also revealed that the anthocyanin structural genes, which were downregulated in SmBIC1-OE and SmBIC2-OE lines, were upregulated in SmBICs-silenced eggplants. In addition, transcriptome analysis further confirmed that differentially expressed genes of SmBICs-OE plants were enriched mainly in the pathways related to anthocyanin biosynthesis, and the key transcription factors and structural genes for anthocyanin biosynthesis, such as SmMYB1, SmTT8, SmHY5, SmCHS, SmCHI, SmDFR and SmANS, were suppressed significantly. Finally, BiFC and blue light-dependent degradation assay suggested that SmBICs interacted with photo-excited SmCRY2 to inhibit its photoreaction, thereby inhibiting the expression of genes related to anthocyanin biosynthesis and reducing anthocyanin accumulation. Collectively, our study suggests that SmBICs repress anthocyanin biosynthesis by inhibiting photoactivation of SmCRY2. This study provides a new working model for anthocyanin biosynthesis in eggplant.


2020 ◽  
Vol 21 (16) ◽  
pp. 5878
Author(s):  
Dan Huo ◽  
Xiaokun Liu ◽  
Yue Zhang ◽  
Jingjing Duan ◽  
Yanlong Zhang ◽  
...  

Paeonia qiui is a wild tree peony native to China. Its leaves show a clear purple-red color from the germination to the flowering stage, and it has high leaf-viewing value. A MYB transcription factor gene, designated as PqMYB4, was isolated from leaves of P. qiui based on transcriptome datas. The full-length cDNA of PqMYB4 was 693 bp, encoding 230 amino acids. Sequence alignment and phylogenetic analysis revealed that PqMYB4 was a R2R3-MYB transcription factor clustered with AtMYB4 in Arabidopsis thaliana. Moreover, it contained a C1 motif, an EAR repression motif and a TLLLFR motif in the C-terminal domains, which were unique in transcription repression MYB. Subcellular location analysis showed that PqMYB4 was located in the cell nucleus. PqMYB4 was highly expressed in the late stage of leaf development, and was negatively correlated with the anthocyanin content. The petiole of wild-type Arabidopsis seedlings was deeper in color than the transgenic lines of PqMYB4 and showed a little purple-red color. The seed coat color of Arabidopsis seeds that overexpressed PqMYB4 gene was significantly lighter than that of wild-type seeds. In transgenic Arabidopsis, the expression level of AtCHS, AtCHI, AtDFR and AtANS were down-regulated significantly. These results showed that PqMYB4 was involved in the negative regulation of anthocyanin biosynthesis in tree peony leaves, which can control the anthocyanin pathway genes. Together, these findings provide a valuable resource with which to further study the regulatory mechanism of anthocyanin biosynthesis in the leaf of P. qiui. They also benefit the molecular breeding of tree peony cultivars with colored leaf.


2019 ◽  
Vol 20 (5) ◽  
pp. 1055 ◽  
Author(s):  
Xinpeng Zhang ◽  
Zongda Xu ◽  
Xiaoyan Yu ◽  
Lanyong Zhao ◽  
Mingyuan Zhao ◽  
...  

Flower color is a charming phenotype with very important ornamental and commercial values. Anthocyanins play a critical role in determining flower color pattern formation, and their biosynthesis is typically regulated by R2R3-MYB transcription factors (TFs). Paeonia suffruticosa is a famous ornamental plant with colorful flowers. However, little is known about the R2R3-MYB TFs that regulate anthocyanin accumulation in P. suffruticosa. In the present study, two R2R3-MYB TFs, namely, PsMYB114L and PsMYB12L, were isolated from the petals of P. suffruticosa ‘Shima Nishiki’ and functionally characterized. Sequence analysis suggested that PsMYB114L contained a bHLH-interaction motif, whereas PsMYB12L contained two flavonol-specific motifs (SG7 and SG7-2). Subsequently, the in vivo function of PsMYB114L and PsMYB12L was investigated by their heterologous expression in Arabidopsis thaliana and apple calli. In transgenic Arabidopsis plants, overexpression of PsMYB114L and of PsMYB12L caused a significantly higher accumulation of anthocyanins, resulting in purple-red leaves. Transgenic apple calli overexpressing PsMYB114L and PsMYB12L also significantly enhanced the anthocyanins content and resulted in a change in the callus color to red. Meanwhile, gene expression analysis in A. thaliana and apple calli suggested that the expression levels of the flavonol synthase (MdFLS) and anthocyanidin reductase (MdANR) genes were significantly downregulated and the dihydroflavonol 4-reductase (AtDFR) and anthocyanin synthase (AtANS) genes were significantly upregulated in transgenic lines of PsMYB114L. Moreover, the expression level of the FLS gene (MdFLS) was significantly downregulated and the DFR (AtDFR/MdDFR) and ANS (AtANS/MdANS) genes were all significantly upregulated in transgenic lines plants of PsMYB12L. These results indicate that PsMYB114L and PsMYB12L both enhance anthocyanin accumulation by specifically regulating the expression of some anthocyanin biosynthesis-related genes in different plant species. Together, these results provide a valuable resource with which to further study the regulatory mechanism of anthocyanin biosynthesis in P. suffruticosa and for the breeding of tree peony cultivars with novel and charming flower colors.


2018 ◽  
Vol 19 (10) ◽  
pp. 3209 ◽  
Author(s):  
Xueyan Yuan ◽  
Weihong Sun ◽  
Xiaoxing Zou ◽  
Bobin Liu ◽  
Wei Huang ◽  
...  

Flower and fruit colors are of vital importance to the ecology and economic market value of plants. The mechanisms of flower and fruit coloration have been well studied, especially among ornamental flower plants and cultivated fruits. As people pay more attention to exocarp coloration, the endocarp coloration in some species has often been ignored. Here, we report on the molecular mechanism of endocarp coloration in three development stages of Euscaphis konishii. The results show that endocarp reddening is closely related to anthocyanin accumulation, and a total of 86,120 unigenes were assembled, with a mean length of 893 bp (N50 length of 1642 bp). We identified a large number of differentially expressed genes associated with endocarp coloration, including anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll breakdown. The genes participating in each step of the anthocyanin biosynthesis were found in the transcriptome dataset, but a few genes were found in the carotenoid biosynthesis and chlorophyll breakdown. In addition, the candidate R2R3-MYB transcription factors and candidate glutathione S-transferase transport genes, which likely regulate the anthocyanin biosynthesis, were identified. This study offers a platform for E. konishii functional genomic research and provides a reference for revealing the regulatory mechanisms of endocarp reddening.


2021 ◽  
Vol 282 ◽  
pp. 110020
Author(s):  
Suli Shi ◽  
Yang Liu ◽  
Yongjun He ◽  
Linzhi Li ◽  
Dalu Li ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1064 ◽  
Author(s):  
Dylan Rothenberg ◽  
Haijun Yang ◽  
Meiban Chen ◽  
Wenting Zhang ◽  
Lingyun Zhang

Almost all flowers of the tea plant (Camellia sinensis) are white, which has caused few researchers to pay attention to anthocyanin accumulation and color changing in tea flowers. A new purple-leaf cultivar, Baitang purple tea (BTP) was discovered in the Baitang Mountains of Guangdong, whose flowers are naturally pink, and can provide an opportunity to understand anthocyanin metabolic networks and flower color development in tea flowers. In the present study, twelve anthocyanin components were identified in the pink tea flowers, namely cyanidin O-syringic acid, petunidin 3-O-glucoside, pelargonidin 3-O-beta-d-glucoside, which marks the first time these compounds have been found in the tea flowers. The presence of these anthocyanins seem most likely to be the reason for the pink coloration of the flowers. Twenty-one differentially expressed genes (DEGs) involved in anthocyanin pathway were identified using KEGG pathway functional enrichment, and ten of these DEG’s screened using venn and KEGG functional enrichment analysis during five subsequent stages of flower development. By comparing DEGs and their expression levels across multiple flower development stages, we found that anthocyanin biosynthesis and accumulation in BTP flowers mainly occurred between the third and fourth stages (BTP3 to BTP4). Particularly, during the period of peak anthocyanin synthesis 17 structural genes were upregulated, and four structural genes were downregulated only. Ultimately, eight critical genes were identified using weighted gene co-expression network analysis (WGCNA), which were found to have direct impact on biosynthesis and accumulation of three flavonoid compounds, namely cyanidin 3-O-glucoside, petunidin 3-O-glucoside and epicatechin gallate. These results provide useful information about the molecular mechanisms of coloration in rare pink tea flower of anthocyanin-rich tea, enriching the gene resource and guiding further research on anthocyanin accumulation in purple tea.


Sign in / Sign up

Export Citation Format

Share Document