IcePicks: a collaborative database of Greenland outlet glacier termini

Author(s):  
Sophie Goliber ◽  
Taryn Black ◽  
Ginny Catania

<p>Marine-terminating outlet glacier terminus change mapped from satellite and aerial imagery in Greenland is used extensively in understanding how outlet glaciers adjust to climatic changes over a range of time scales. Numerous studies have digitized termini manually, but this process is labor-intensive and may lead to duplication of efforts. Additionally, these studies use different methods to pick the front (e.g. centerline pick, whole delineation, box method), which makes them difficult to compare. At the same time, machine learning techniques are rapidly making progress in their ability to accurately automate the extraction of glacier termini, with promising developments across a number of satellite sensors. However, limitations still exist: in particular, further high-quality manually-digitized training data are needed to make robust automatic picks. Here we present efforts to produce a database of manually digitized terminus picks and an intercomparison of picking techniques to determine errors and best practices for future efforts in digitization. These data will be cleaned, associated with appropriate metadata, and compiled so they can be easily accessed by scientists. Ultimately, these data will be used to create training data for further automatic picking efforts. We hope to solicit further collaboration with members of EGU and encourage those interested to email the authors.</p>

2021 ◽  
Author(s):  
Sophie Goliber ◽  
Taryn Black ◽  
Ginny Catania ◽  
James M. Lea ◽  
Helene Olsen ◽  
...  

Abstract. Marine-terminating outlet glacier terminus traces, mapped from satellite and aerial imagery, have been used extensively in understanding how outlet glaciers adjust to climate change variability over a range of time scales. Numerous studies have digitized termini manually, but this process is labor-intensive, and no consistent approach exists. A lack of coordination leads to duplication of efforts, particularly for Greenland, which is a major scientific research focus. At the same time, machine learning techniques are rapidly making progress in their ability to automate accurate extraction of glacier termini, with promising developments across a number of optical and SAR satellite sensors. These techniques rely on high quality, manually digitized terminus traces to be used as training data for robust automatic traces. Here we present a database of manually digitized terminus traces for machine learning and scientific applications. These data have been collected, cleaned, assigned with appropriate metadata including image scenes, and compiled so they can be easily accessed by scientists. The TermPicks data set includes 39,060 individual terminus traces for 278 glaciers with a mean and median number of traces per glacier of 136 ± 190 and 93, respectively. Across all glaciers, 32,567 dates have been picked, of which 4,467 have traces from more than one author (duplication of 14 %). We find a median error of ∼100 m among manually-traced termini. Most traces are obtained after 1999, when Landsat 7 was launched. We also provide an overview of an updated version of The Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for future manual picking of the Greenland Ice Sheet.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nizam Ud Din ◽  
Ji Yu

AbstractAdvances in the artificial neural network have made machine learning techniques increasingly more important in image analysis tasks. Recently, convolutional neural networks (CNN) have been applied to the problem of cell segmentation from microscopy images. However, previous methods used a supervised training paradigm in order to create an accurate segmentation model. This strategy requires a large amount of manually labeled cellular images, in which accurate segmentations at pixel level were produced by human operators. Generating training data is expensive and a major hindrance in the wider adoption of machine learning based methods for cell segmentation. Here we present an alternative strategy that trains CNNs without any human-labeled data. We show that our method is able to produce accurate segmentation models, and is applicable to both fluorescence and bright-field images, and requires little to no prior knowledge of the signal characteristics.


2020 ◽  
Author(s):  
Yosoon Choi ◽  
Jieun Baek ◽  
Jangwon Suh ◽  
Sung-Min Kim

<p>In this study, we proposed a method to utilize a multi-sensor Unmanned Aerial System (UAS) for exploration of hydrothermal alteration zones. This study selected an area (10m × 20m) composed mainly of the andesite and located on the coast, with wide outcrops and well-developed structural and mineralization elements. Multi-sensor (visible, multispectral, thermal, magnetic) data were acquired in the study area using UAS, and were studied using machine learning techniques. For utilizing the machine learning techniques, we applied the stratified random method to sample 1000 training data in the hydrothermal zone and 1000 training data in the non-hydrothermal zone identified through the field survey. The 2000 training data sets created for supervised learning were first classified into 1500 for training and 500 for testing. Then, 1500 for training were classified into 1200 for training and 300 for validation. The training and validation data for machine learning were generated in five sets to enable cross-validation. Five types of machine learning techniques were applied to the training data sets: k-Nearest Neighbors (k-NN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN). As a result of integrated analysis of multi-sensor data using five types of machine learning techniques, RF and SVM techniques showed high classification accuracy of about 90%. Moreover, performing integrated analysis using multi-sensor data showed relatively higher classification accuracy in all five machine learning techniques than analyzing magnetic sensing data or single optical sensing data only.</p>


2016 ◽  
Vol 42 (6) ◽  
pp. 782-797 ◽  
Author(s):  
Haifa K. Aldayel ◽  
Aqil M. Azmi

The fact that people freely express their opinions and ideas in no more than 140 characters makes Twitter one of the most prevalent social networking websites in the world. Being popular in Saudi Arabia, we believe that tweets are a good source to capture the public’s sentiment, especially since the country is in a fractious region. Going over the challenges and the difficulties that the Arabic tweets present – using Saudi Arabia as a basis – we propose our solution. A typical problem is the practice of tweeting in dialectical Arabic. Based on our observation we recommend a hybrid approach that combines semantic orientation and machine learning techniques. Through this approach, the lexical-based classifier will label the training data, a time-consuming task often prepared manually. The output of the lexical classifier will be used as training data for the SVM machine learning classifier. The experiments show that our hybrid approach improved the F-measure of the lexical classifier by 5.76% while the accuracy jumped by 16.41%, achieving an overall F-measure and accuracy of 84 and 84.01% respectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Dieter Devlaminck ◽  
Bart Wyns ◽  
Moritz Grosse-Wentrup ◽  
Georges Otte ◽  
Patrick Santens

Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low.


Author(s):  
Roya Nasimi ◽  
Fernando Moreu ◽  
John Stormont

Abstract Rockfalls are a hazard for the safety of infrastructure as well as people. Identifying loose rocks by inspection of slopes adjacent to roadways and other infrastructure and removing them in advance can be an effective way to prevent unexpected rockfall incidents. This paper proposes a system towards an automated inspection for potential rockfalls. A robot is used to repeatedly strike or tap on the rock surface. The sound from the tapping is collected by the robot and subsequently classified with the intent of identifying rocks that are broken and prone to fall. Principal Component Analysis (PCA) of the collected acoustic data is used to recognize patterns associated with rocks of various conditions, including intact as well as rock with different types and locations of cracks. The PCA classification was first demonstrated simulating sounds of different characteristics that were automatically trained and tested. Secondly, a laboratory test was conducted tapping rock specimens with three different levels of discontinuity in depth and shape. A real microphone mounted on the robot recorded the sound and the data were classified in three clusters within 2D space. A model was created using the training data to classify the reminder of the data (the test data). The performance of the method is evaluated with a confusion matrix.


2021 ◽  
Author(s):  
Nizam Ud Din ◽  
Ji Yu

Advances in the artificial neural network have made machine learning techniques increasingly more important in image analysis tasks. More recently, convolutional neural networks (CNN) have been applied to the problem of cell segmentation from microscopy images. However, previous methods used a supervised training paradigm in order to create an accurate segmentation model. This strategy requires a large amount of manually labeled cellular images, in which accurate segmentations at pixel level were produced by human operators. Generating training data is expensive and a major hindrance in the wider adoption of machine learning based methods for cell segmentation. Here we present an alternative strategy that uses unsupervised learning to train CNNs without any human-labeled data. We show that our method is able to produce accurate segmentation models. More importantly, the algorithm is applicable to both fluorescence and bright-field images, requiring no prior knowledge of signal characteristics and requires no tuning of parameters.


Sign in / Sign up

Export Citation Format

Share Document