Exposure analysis of Chinese railways under the Change of Extreme-Precipitation in the future

Author(s):  
Jing Zhao ◽  
Kai liu ◽  
Ming Wang

<p>Abstract: Rainfall-induced disaster is the most frequent disaster affected Chinese Railway System. Climate change will lead to more extreme rainfall in the future. A better understanding of extreme precipitation in the future and the exposure of railway infrastructures to extreme precipitation will facilitate railway planning and disaster risk management. This paper employs climate model simulations to calculate the changes of the extreme precipitation under different global warming scenarios. The return periods of the present 50-yr/100-yr return-period precipitation amount in the future are obtained. Based on this, the changes of the exposure of Chinese railways to extreme precipitation are analyzed. The results reveal that 58.61% (55.46) of China’s region will experience an increase in the 50-yr(100-yr) return-period precipitation under 1.5°C warming in comparison with the present period (2001–2020), the value will be 64.44% and 59.53% due to the additional 0.5°C warming. By calculating the exposure of Chinese railways, we found that 28.49% (32.15) of China's railways are in the region where 50-yr return-period rainfall at this stage will occur less than 20 years under 1.5°C (2.0°C) warming, and 36.85% (41.39)of China's railways are in the region where 100-yr return-period rainfall at this stage will occur less than 50 years under 1.5°C (2.0°C) warming in the future. This study quantified the exposure of China’s railway to extreme precipitation under the 1.5°C/2.0°C global warming. The results provided in this study have profound significance for the fortification planning of China's railway system for rainfall-induced disasters and provide useful experience for other countries.</p>

2016 ◽  
Vol 29 (13) ◽  
pp. 4779-4791 ◽  
Author(s):  
Xiaoming Shi ◽  
Dale Durran

Abstract Climate-model simulations predict an intensification of extreme precipitation in almost all areas of the world under global warming. Local variations in the magnitude of this intensification are evident in these simulations, but most previous efforts to understand the factors responsible for the changes in extreme precipitation focused on zonal averages and neglected zonal variations, leading to uncertainties in the understanding and estimation of regional responses. Here the spatial heterogeneity of the warming-induced response of midlatitude extreme precipitation is studied in climate-model simulations with idealized orography on the western margins of otherwise flat continents. It is shown that the sensitivity of extreme precipitation to warming (i.e., its fractional rate of increase in intensity with global-mean surface temperature) is ~3% K−1 lower over the mountains than the oceans and plains. This difference in sensitivity is primarily produced by differences in the dynamics governing vertical ascent over the three regions. In these extreme events, mountain-wave dynamics control the moist ascent over the mountains, and the sensitivity of this ascent to global warming is mainly controlled by changes in upper-level dry static stability and the cross-mountain winds. In contrast, midlatitude cyclone dynamics govern moist ascent over the oceans and plains. Ascending motions in intense midlatitude cyclones are sensitive to the ratio of the moist static stability in their saturated cores to the dry stability in surrounding regions. This ratio decreases in the warmer world, intensifying the maximum vertical velocities while reducing the horizontal extent of the regions of the rising air within the cyclone.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ling Li ◽  
Ziniu Xiao ◽  
Shuxiang Luo ◽  
Aili Yang

Extreme precipitation events, which have intensified with global warming, will have a pernicious influence on society. It would be desirable to understand how they will evolve in the future as global warming becomes more serious with time. Thus, the primary objective of this study is to provide a comprehensive understanding of the changing characteristics of the precipitation extremes in the 21st century over Shaanxi Province, a climate-sensitive and environmentally fragile area located in the east of northwestern China, based on a consecutive simulation of the 21st century conducted by the regional climate model RegCM4 forced by the global climate model HadGEM2-ES at high resolution under middle emission scenario of the Representative Concentration Pathway 4.5 (RCP4.5). Basic validation of the model performance was carried out, and six extreme precipitation indices (EPIs) were used to assess the intensity and frequency of the extreme precipitation events over Shaanxi Province. The results show that RegCM4 reproduces the observed characteristics of extreme precipitation events over Shaanxi Province well. Overall for the domain, the EPIs excluding consecutive dry days (CDD) have a growing tendency during 1980–2098 although they exhibit spatial variability over Shaanxi Province. Some areas in the arid northern Shaanxi may have more heavy rainfalls by the middle of the 21st century but less wet extreme events by the end of the 21st century. And the humid central and southern regions would suffer more precipitation-related natural hazards in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. Myhre ◽  
K. Alterskjær ◽  
C. W. Stjern ◽  
Ø. Hodnebrog ◽  
L. Marelle ◽  
...  

Abstract The intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales. Based on observations we find that the total precipitation from these intense events almost doubles per degree of warming, mainly due to changes in frequency, while the intensity changes are relatively weak, in accordance to previous studies. This shift towards stronger total precipitation from extreme events is seen in observations and climate models, and increases with the strength – and hence the rareness – of the event. Based on these results, we project that if historical trends continue, the most intense precipitation events observed today are likely to almost double in occurrence for each degree of further global warming. Changes to extreme precipitation of this magnitude are dramatically stronger than the more widely communicated changes to global mean precipitation.


2021 ◽  
Author(s):  
Ka Wai So ◽  
Chi-Yung Tam ◽  
Ngar-Cheung Lau

Abstract The impacts of global warming on Meiyu-Baiu extreme rainfall and the associated mid-latitude synoptic-scale weather systems over the Eastern China (EC) and the Baiu rainband (Bu) regions in East Asia have been examined, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model (MRI-AGCM3.2S). This model was demonstrated to give realistic Asian extreme rainfall, when compared with data from the Tropical Rainfall Measuring Mission (TRMM). Here we used a novel wave-selection algorithm based on the 300hPa wind, in order to identify upper-level propagating wave signals in conjunction with the occurrence of extreme precipitation in either EC or Bu. The same algorithm was applied for both the present (1979-2003) and future (2075-2099) climate simulations from the AGCM, so as to infer the impacts of global warming on the behavior of these systems. Results show robust decrease of intensity of systems influencing both Bu and EC in the future warmer climate. Their corresponding low-to-mid level circulation, as revealed by vertical velocity, temperature advection and sea-level pressure composites, was also found to be weakened. This is likely related to changes in the background circulation in future over the East Asian mid-latitude zone, such as the widespread increment of the seasonal mean static stability at 500 hPa. However, the wave-associated precipitation over these regions was enhanced in the future climate simulations. This can be attributed to more strong intensity rainfall, which increases as the background temperature in these regions warms, largely following the Clausius-Clapeyron relation. Therefore, changes of wave-related extreme precipitation in EC and Bu are mainly controlled by the thermodynamic effect; the latter appears to be much stronger than the potential impacts due to the slight weakening of these weather systems.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 9-15 ◽  
Author(s):  
M. Grum ◽  
A.T. Jørgensen ◽  
R.M. Johansen ◽  
J.J. Linde

That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps: Firstly, hourly rainfall intensities from 16 point rain gauges are averaged to create a rain gauge equivalent intensity for a 25 × 25 km square corresponding to one grid cell in the climate model. Secondly, the differences between present and future in the climate model is used to project the hourly extreme statistics of the rain gauge surface into the future. Thirdly, the future extremes of the square surface area are downscaled to give point rainfall extremes of the future. The results and conclusions rely heavily on the regional model's suitability in describing extremes at time-scales relevant to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change.


2021 ◽  
Author(s):  
Cathryn Birch ◽  
Lawrence Jackson ◽  
Declan Finney ◽  
John Marsham ◽  
Rachel Stratton ◽  
...  

<p>Mean temperatures and their extremes have increased over Africa since the latter half of the 20th century and this trend is projected to continue, with very frequent, intense and often deadly heatwaves likely to occur very regularly over much of Africa by 2100. It is crucial that we understand the scale of the future increases in extremes and the driving mechanisms. We diagnose daily maximum wet bulb temperature heatwaves, which allows for both the impact of temperature and humidity, both critical for human health and survivability. During wet bulb heatwaves, humidity and cloud cover increase, which limits the surface shortwave radiation flux but increases longwave warming. It is found from observations and ERA5 reanalysis that approximately 30% of wet bulb heatwaves over Africa are associated with daily rainfall accumulations of more than 1 mm/day on the first day of the heatwave. The first ever pan-African convection-permitting climate model simulations of present-day and RCP8.5 future climate are utilised to illustrate the projected future change in heatwaves, their drivers and their sensitivity to the representation of convection. Compared to ERA5, the convection-permitting model better represents the frequency and magnitude of present-day wet bulb heatwaves than a version of the model with more traditional parameterised convection. The future change in heatwave frequency, duration and magnitude is also larger in the convective-scale simulation, suggesting CMIP-style models may underestimate the future change in wet bulb heat extremes over Africa. The main reason for the larger future change appears to be the ability of the model to produce larger anomalies relative to its climatology in precipitation, cloud and the surface energy balance.</p>


2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 712
Author(s):  
Mamadou Lamine Mbaye ◽  
Mouhamadou Bamba Sylla ◽  
Moustapha Tall

This study assesses the changes in precipitation (P) and in evapotranspiration (ET) under 1.5 °C and 2.0 °C global warming levels (GWLs) over Senegal in West Africa. A set of twenty Regional Climate Model (RCM) simulations within the Coordinated Regional Downscaling Experiment (CORDEX) following the Representative Concentration Pathways (RCP) 4.5 emission scenario is used. Annual and seasonal changes are computed between climate simulations under 1.5 °C and 2.0 °C warming, with respect to 0.5 °C warming, compared to pre-industrial levels. The results show that annual precipitation is likely to decrease under both magnitudes of warming; this decrease is also found during the main rainy season (July, August, September) only and is more pronounced under 2 °C warming. All reference evapotranspiration calculations, from Penman, Hamon, and Hargreaves formulations, show an increase in the future under the two GWLs, except annual Penman evapotranspiration under the 1.5 °C warming scenario. Furthermore, seasonal and annual water balances (P-ET) generally exhibit a water deficit. This water deficit (up to 180 mm) is more substantial with Penman and Hamon under 2 °C. In addition, analyses of changes in extreme precipitation reveal an increase in dry spells and a decrease in the number of wet days. However, Senegal may face a slight increase in very wet days (95th percentile), extremely wet days (99th), and rainfall intensity in the coming decades. Therefore, in the future, Senegal may experience a decline in precipitation, an increase of evapotranspiration, and a slight increase in heavy rainfall. Such changes could have serious consequences (e.g., drought, flood, etc.) for socioeconomic activities. Thus, strong governmental politics are needed to restrict the global mean temperature to avoid irreversible negative climate change impacts over the country. The findings of this study have contributed to a better understanding of local patterns of the Senegal hydroclimate under the two considered global warming scenarios.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


Sign in / Sign up

Export Citation Format

Share Document