scholarly journals Impacts of Global Warming on Meiyu-Baiu Extreme Rainfall and Associated Mid-Latitude Synoptic-Scale Systems as Inferred From 20km AGCM Simulations

Author(s):  
Ka Wai So ◽  
Chi-Yung Tam ◽  
Ngar-Cheung Lau

Abstract The impacts of global warming on Meiyu-Baiu extreme rainfall and the associated mid-latitude synoptic-scale weather systems over the Eastern China (EC) and the Baiu rainband (Bu) regions in East Asia have been examined, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model (MRI-AGCM3.2S). This model was demonstrated to give realistic Asian extreme rainfall, when compared with data from the Tropical Rainfall Measuring Mission (TRMM). Here we used a novel wave-selection algorithm based on the 300hPa wind, in order to identify upper-level propagating wave signals in conjunction with the occurrence of extreme precipitation in either EC or Bu. The same algorithm was applied for both the present (1979-2003) and future (2075-2099) climate simulations from the AGCM, so as to infer the impacts of global warming on the behavior of these systems. Results show robust decrease of intensity of systems influencing both Bu and EC in the future warmer climate. Their corresponding low-to-mid level circulation, as revealed by vertical velocity, temperature advection and sea-level pressure composites, was also found to be weakened. This is likely related to changes in the background circulation in future over the East Asian mid-latitude zone, such as the widespread increment of the seasonal mean static stability at 500 hPa. However, the wave-associated precipitation over these regions was enhanced in the future climate simulations. This can be attributed to more strong intensity rainfall, which increases as the background temperature in these regions warms, largely following the Clausius-Clapeyron relation. Therefore, changes of wave-related extreme precipitation in EC and Bu are mainly controlled by the thermodynamic effect; the latter appears to be much stronger than the potential impacts due to the slight weakening of these weather systems.

2020 ◽  
Author(s):  
Jing Zhao ◽  
Kai liu ◽  
Ming Wang

<p>Abstract: Rainfall-induced disaster is the most frequent disaster affected Chinese Railway System. Climate change will lead to more extreme rainfall in the future. A better understanding of extreme precipitation in the future and the exposure of railway infrastructures to extreme precipitation will facilitate railway planning and disaster risk management. This paper employs climate model simulations to calculate the changes of the extreme precipitation under different global warming scenarios. The return periods of the present 50-yr/100-yr return-period precipitation amount in the future are obtained. Based on this, the changes of the exposure of Chinese railways to extreme precipitation are analyzed. The results reveal that 58.61% (55.46) of China’s region will experience an increase in the 50-yr(100-yr) return-period precipitation under 1.5°C warming in comparison with the present period (2001–2020), the value will be 64.44% and 59.53% due to the additional 0.5°C warming. By calculating the exposure of Chinese railways, we found that 28.49% (32.15) of China's railways are in the region where 50-yr return-period rainfall at this stage will occur less than 20 years under 1.5°C (2.0°C) warming, and 36.85% (41.39)of China's railways are in the region where 100-yr return-period rainfall at this stage will occur less than 50 years under 1.5°C (2.0°C) warming in the future. This study quantified the exposure of China’s railway to extreme precipitation under the 1.5°C/2.0°C global warming. The results provided in this study have profound significance for the fortification planning of China's railway system for rainfall-induced disasters and provide useful experience for other countries.</p>


2011 ◽  
Vol 4 (4) ◽  
pp. 3339-3361 ◽  
Author(s):  
Q. Yan ◽  
Z. Zhang ◽  
H. Wang ◽  
Y. Gao ◽  
W. Zheng

Abstract. The mid-Pliocene warm period (~3.3 to 3.0 Ma BP) is a potential analogue for future climate under global warming. In this study, we use an atmospheric general circulation model (AGCM) called CAM3.1 to simulate the mid-Pliocene climate with the PRISM3D boundary conditions. The simulations show that the global annual mean surface air temperature (SAT) increases by 2.0 °C in the mid-Pliocene compared with the pre-industrial temperature. The greatest warming mainly occurs in the high latitudes of both hemispheres, with little change in SAT at low latitudes. The equator-to-pole SAT gradient is reduced in the mid-Pliocene simulation. The annual mean precipitation is enhanced by 3.6% of the pre-industrial value. However, the changes in precipitation are greater in low latitudes than high latitudes.


2013 ◽  
Vol 26 (24) ◽  
pp. 9986-10005 ◽  
Author(s):  
Sachie Kanada ◽  
Akiyoshi Wada ◽  
Masato Sugi

Abstract Recent studies have projected that global warming may lead to an increase in the number of extremely intense tropical cyclones. However, how global warming affects the structure of extremely intense tropical cyclones has not been thoroughly examined. This study defines extremely intense tropical cyclones as having a minimum central pressure below 900 hPa and investigates structural changes in the inner core and thereby changes in the intensity in the future climate. A 2-km mesh nonhydrostatic model (NHM2) is used to downscale the 20-km mesh atmospheric general circulation model projection forced with a control scenario and a scenario of twenty-first-century climate change. The eyewall region of extremely intense tropical cyclones simulated by NHM2 becomes relatively smaller and taller in the future climate. The intense near-surface inflow intrudes more inward toward the eye. The heights and the radii of the maximum wind speed significantly decrease and an intense updraft area extends from the lower level around the leading edge of thinner near-surface inflows, where the equivalent potential temperature substantially increases in the future climate. Emanuel’s potential intensity theory suggests that about half of the intensification (increase in central pressure fall) is explained by the changes in the atmospheric environments and sea surface temperature, while the remaining half needs to be explained by other processes. It is suggested that the structural change projected by NHM2, which is significant within a radius of 50 km, is playing an important role in the intensification of extremely intense tropical cyclones in simulations of the future climate.


2012 ◽  
Vol 5 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Q. Yan ◽  
Z. S. Zhang ◽  
H. J. Wang ◽  
Y. Q. Gao ◽  
W. P. Zheng

Abstract. The mid-Pliocene warm period ~3.264 to 3.025 Ma) is a potential analogue for future climate under global warming. In this study, we use an atmospheric general circulation model (AGCM) called CAM3.1 to simulate the mid-Pliocene climate with the PRISM3D boundary conditions. The simulations show that the global annual mean surface air temperature (SAT) increases by 2.0 °C in the mid-Pliocene compared with the pre-industrial temperature. The greatest warming occurs at high latitudes of both hemispheres, with little change in SAT at low latitudes. The equator-to-pole SAT gradient is reduced in the mid-Pliocene simulation. The annual mean precipitation is enhanced by 3.6% of the pre-industrial value. However, the changes in precipitation are greater at low latitudes than at high latitudes.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1509
Author(s):  
Mengru Zhang ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Ming Pan ◽  
Shanhu Jiang ◽  
...  

In the context of global climate change, it is important to monitor abnormal changes in extreme precipitation events that lead to frequent floods. This research used precipitation indices to describe variations in extreme precipitation and analyzed the characteristics of extreme precipitation in four climatic (arid, semi-arid, semi-humid and humid) regions across China. The equidistant cumulative distribution function (EDCDF) method was used to downscale and bias-correct daily precipitation in eight Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs). From 1961 to 2005, the humid region had stronger and longer extreme precipitation compared with the other regions. In the future, the projected extreme precipitation is mainly concentrated in summer, and there will be large areas with substantial changes in maximum consecutive 5-day precipitation (Rx5) and precipitation intensity (SDII). The greatest differences between two scenarios (RCP4.5 and RCP8.5) are in semi-arid and semi-humid areas for summer precipitation anomalies. However, the area of the four regions with an increasing trend of extreme precipitation is larger under the RCP8.5 scenario than that under the RCP4.5 scenario. The increasing trend of extreme precipitation in the future is relatively pronounced, especially in humid areas, implying a potential heightened flood risk in these areas.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


2019 ◽  
Vol 111 ◽  
pp. 06056
Author(s):  
Kuo-Tsang Huang ◽  
Yu-Teng Weng ◽  
Ruey-Lung Hwang

These future building energy studies mainly stem from hourly based dynamic building simulation results with the future weather data. The reliability of the future building energy forecast heavily relies on the accuracy of these future weather data. The global circulation models (GCMs) provided by IPCC are the major sources for constructing future weather data. However, there are uncertainties existed among them even with the same climate change scenarios. There is a need to develop a method on how to select the suitable GCM for local application. This research firstly adopted principal component analysis (PCA) method in choosing the suitable GCM for application in Taiwan, and secondly the Taiwanese hourly future meteorological data sets were constructed based on the selected GCM by morphing method. Thirdly, the future cooling energy consumption of an actual office building in the near (2011-2040), the mid (2041-2070), and the far future (2071-2100), were analysed. The results show that NorESM1-M GCM has the lowest root mean square error (RMSE) as opposed to the other GCMs, and was identified as the suitable GCM for further future climate generation processing. The building simulation against the future weather datasets revealed that the average cooling energy use intensity (EUIc) in Taipei will be increased by 12%, 17%, and 34% in the 2020s, 2050s, and 2080s, respectively, as compared to the current climate.


2021 ◽  
Author(s):  
Daichi Takabatake ◽  
Masaru Inatsu

Abstract We analyzed a large ensemble dataset called the database for Policy Decision Making for Future climate change (d4PDF), which contains 60-km resolution atmospheric general circulation model output and 20-km resolution dynamical downscaling for the Japanese domain. The increase in moisture and precipitation, and their global warming response in June–July–August were described focusing on the differences between Hokkaido and Kyushu. The results suggested that the specific humidity increased almost following the Clausius Clapeyron relation, but the change in stationary circulation suppressed the precipitation increase, except for in western Kyushu. The + 4 K climate in Hokkaido would be as hot and humid as the present climate in Kyushu. The circulation change related to the southward shift of the jet stream and an eastward shift of the Bonin high weakened the moisture flux convergence via a stationary field over central Japan including eastern Kyushu. The transient eddy activity counteracted the increase in humidity, so that the moisture flux convergence and precipitation did not change much over Hokkaido. Because the contribution of tropical cyclones to the total precipitation was at most 10%, the decrease in the number of tropical cyclones did not explain the predicted change in precipitation.


Sign in / Sign up

Export Citation Format

Share Document