scholarly journals On the scaling between precursory moment release and earthquake magnitude: Insights from the laboratory.

Author(s):  
Mateo Acosta ◽  
Francois Passelègue ◽  
Alexandre Schubnel ◽  
Raúl Madariaga ◽  
Marie Violay

<p>Recent seismological observations highlighted that both aseismic silent slip and/or foreshock sequences can precede large earthquake ruptures (Tohoku-Oki, 2011, Mw 9.0  (Kato et al., 2012); Iquique, 2014, Mw 8.1 (Ruiz et al, 2014; Socquet et al., 2017); Illapel, 2015, Mw 8.3 (Huang and Meng, 2018); Nicoya, 2012, Mw 7.6 (Voss et al., 2018)). However, the evolution of such precursory markers during earthquake nucleation remains poorly understood. Here, we report for the first time, experimental results regarding the nucleation of laboratory earthquakes (stick slip events) conducted on Westerly Granite saw-cut samples under both dry and fluid pressure conditions. Experiments were conducted under stress conditions representative of the upper continental crust, i.e confining pressures from 50 to 95 MPa; fluid pressures (water) ranging from 0 to 45 MPa.</p><p>At a given effective confining pressure, different precursory slip behaviors are observed. In dry conditions, we observe that slip evolves exponentially up to the main instability and is escorted by an exponential increase of acoustic emissions. With pressurized fluids, precursory slip evolves first exponentially then switches to a power law of time. There, precursory slip remains silent, independently of the fluid pressure level. The temporal evolution of precursory fault slip and seismicity are controlled by the fault’s environment, limiting its prognostic value. Nevertheless, we show that, independently of the fault conditions, the total precursory moment release scales with the co-seismic moment of the main instability. The relation follows a semi- empirical scaling relationship between precursory and co-seismic moment release by combining nucleation theory (Ida, 1972; Campillo and Ionescu, 1992) with the scaling between fracture energy and co-seismic slip which has been demonstrated experimentally (Nielsen et al., 2016; Passelègue et al., 2016), theoretically (Viesca and Garagash; 2015) and by natural observations (Abercrombie and Rice; 2005). We then compile data from natural earthquakes, and show that, over a range of Mw6.0 to Mw9.0 the proposed scaling law holds for natural observations. In summary, the amount of moment released prior to an earthquake is directly related to its magnitude, increasing therefore the detectability of large earthquakes. The scaling relationship between precursory and co-seismic moment should motivate detailed studies of precursory deformation of moderate to large earthquakes.</p>

2020 ◽  
Author(s):  
Alexandre Schubnel ◽  
Samson Marty ◽  
Blandine Gardonio ◽  
Harsha Bhat ◽  
Eiichi Fukuyama ◽  
...  

<p>Over the past decades, an increasing number of seismological observations and improvement in data quality have allowed to better detect <span>foreshock sequences prior to earthquakes. However, due to strong spatial and temporal variations of foreshock occurrence, their underlying physical processes and their links to earthquake nucleation are still under debate. Here we address these issues by looking at precursory acoustic activity during laboratory earthquakes (stick-slip instabilities).<br></span></p><p><span>Here, laboratory earthquake experiments were performed on saw-cut Indian metagabbro under upper crustal stress conditions ranging from 30 to 60 MPa confining pressure. Using a high-frequency monitoring system and calibrated piezoelectric acoustic sensors we continuously record particle velocity field at 10 MHz sampling rate during the experiments. Based on a trigger logic we identify acoustic emissions (AE) within continuous data. From P-wave arrival-time data and from spectral analysis we are able to estimate the following seismological parameters for each AE: location, </span>absolute magnitude, stress-drop and size.</p><p>First, we show that the source parameters of AE (Mw -9.0 to Mw -7.0) follow the same scaling relationship as natural earthquakes justifying the use of acoustic precursors as proxy to foreshocks. We observe that foreshock triggering is systematically related to aseismic slip and that the dynamics of foreshocks mirrors the acceleration of slip-rate preceding failure. Experimental scalings demonstrate that : i- the nucleation evolves  from an aseismic process into a cascading one, and ii) the duration and magnitude of the pre-seismic moment correlates with the magnitude of the mainshock, at least at the scale of the laboratory. Finally, using Hertz contact theory, we find a scaling law between the seismic energy released by foreshocks, the fault roughness  and the normal stress acting on the fault interface.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Junjie Ren ◽  
Shimin Zhang

Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yoshihisa Iio ◽  
Satoshi Matsumoto ◽  
Yusuke Yamashita ◽  
Shin’ichi Sakai ◽  
Kazuhide Tomisaka ◽  
...  

AbstractAfter a large earthquake, many small earthquakes, called aftershocks, ensue. Additional large earthquakes typically do not occur, despite the fact that the large static stress near the edges of the fault is expected to trigger further large earthquakes at these locations. Here we analyse ~10,000 highly accurate focal mechanism solutions of aftershocks of the 2016 Mw 6.2 Central Tottori earthquake in Japan. We determine the location of the horizontal edges of the mainshock fault relative to the aftershock hypocentres, with an accuracy of approximately 200 m. We find that aftershocks rarely occur near the horizontal edges and extensions of the fault. We propose that the mainshock rupture was arrested within areas characterised by substantial stress relaxation prior to the main earthquake. This stress relaxation along fault edges could explain why mainshocks are rarely followed by further large earthquakes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Yongshun John Chen ◽  
Yanbing Liu ◽  
...  

AbstractDetailed crustal structure of large earthquake source regions is of great significance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high-resolution three-dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double-difference seismic tomography method. High-velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high-velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high-velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies.


2021 ◽  
Vol 228 (1) ◽  
pp. 134-146
Author(s):  
Jian Wen ◽  
Jiankuan Xu ◽  
Xiaofei Chen

SUMMARY The stress drop is an important dynamic source parameter for understanding the physics of source processes. The estimation of stress drops for moderate and small earthquakes is based on measurements of the corner frequency ${f_c}$, the seismic moment ${M_0}$ and a specific theoretical model of rupture behaviour. To date, several theoretical rupture models have been used. However, different models cause considerable differences in the estimated stress drop, even in an idealized scenario of circular earthquake rupture. Moreover, most of these models are either kinematic or quasi-dynamic models. Compared with previous models, we use the boundary integral equation method to simulate spontaneous dynamic rupture in a homogeneous elastic full space and then investigate the relations between the corner frequency, seismic moment and source dynamic parameters. Spontaneous ruptures include two states: runaway ruptures, in which the rupture does not stop without a barrier, and self-arresting ruptures, in which the rupture can stop itself after nucleation. The scaling relationships between ${f_c}$, ${M_0}$ and the dynamic parameters for runaway ruptures are different from those for self-arresting ruptures. There are obvious boundaries in those scaling relations that distinguish runaway ruptures from self-arresting ruptures. Because the stress drop varies during the rupture and the rupture shape is not circular, Eshelby's analytical solution may be inaccurate for spontaneous dynamic ruptures. For runaway ruptures, the relations between the corner frequency and dynamic parameters coincide with those in the previous kinematic or quasi-dynamic models. For self-arresting ruptures, the scaling relationships are opposite to those for runaway ruptures. Moreover, the relation between ${f_c}$ and ${M_0}$ for a spontaneous dynamic rupture depends on three factors: the dynamic rupture state, the background stress and the nucleation zone size. The scaling between ${f_c}$ and ${M_0}$ is ${f_c} \propto {M_0^{ - n}}$, where n is larger than 0. Earthquakes with the same dimensionless dynamic parameters but different nucleation zone sizes are self-similar and follow a ${f_c} \propto {M_0^{ - 1/3}}$ scaling law. However, if the nucleation zone size does not change, the relation between ${f_c}$ and ${M_0}$ shows a clear departure from self-similarity due to the rupture state or background stress.


2021 ◽  
Author(s):  
Guilhem Mollon ◽  
Jérôme Aubry ◽  
Alexandre Schubnel

<p>In this communication, we present a novel numerical framework which consists in a direct coupling between a discrete micromechanical modelling of rock damaging processes and a continuous modelling of elastic deformation and acoustic waves. It includes a polygon-based conforming Discrete Element Method (DEM) with a cohesive zone model (CZM, [1]) for the discrete part and a meshfree formulation for the continuum part. This framework is applied to the numerical reproduction of sawcut triaxial tests performed in the lab on marble samples under seismogenic conditions [2]. Realistic boundary conditions (in terms of the elasticity of the loading system, of the absorption of the elastic waves and of the fluid pressure applied on the lateral boundaries) are introduced. Constitutive laws (in the continuum part) and micromechanical parameters (in the discrete part) are calibrated by performing independant simulations based on experimental results found in the literature [3].</p><p>Upon loading, this model provides information on the system behavior that nicely complement the experimental data, such as (i) the progressive damaging of the contacting surfaces, leading to the emission of granular matter in the interface, to the formation of a gouge layer, and to a modification of the interface rheology, (ii) the space and time distribution and statistics and the detailed kinematics of the slip events related to the interface evolution, and (iii) the acoustic wave emission and propagation in the medium associated with such events.</p><p>The model shows that, depending on the experimental conditions (confining pressure, loading rate, surface roughness, etc.), and without relying to any prior choice of slip- or rate-dependent friction laws, a large number of sliding regimes can emerge from this system. This includes large stress drops, regular stick-slip, or stable sliding. This model thus provides an unprecedented view of both local and global phenomena at stake during lab earthquakes, at sampling rates in both space and time which remain out of reach for experimental instrumentation.</p><p>[1]. Mollon, G. (2015). “A numerical framework for discrete modelling of friction and wear using Voronoi polyhedrons”, Tribology International, 90, 343-355<br>[2]. Aubry, J. (2019). “Séismes au laboratoire: friction, plasticité et bilan énergétique”, PhD Thesis, Ecole Normale Supérieure.<br>[3]. Fredrich, J. T.; Evans, B. & Wong, T.-F., (1989). “Micromechanics of the brittle to plastic transition in Carrara marble”, Journal of Geophysical Research: Solid Earth, <span></span></p>


2017 ◽  
Vol 90 (1) ◽  
pp. 391-405 ◽  
Author(s):  
Sutapa Chaudhuri ◽  
Arumita Roy Chowdhury ◽  
Payel Das

2003 ◽  
Vol 3 (3/4) ◽  
pp. 165-170 ◽  
Author(s):  
M. Kachakhidze ◽  
N. Kachakhidze ◽  
R. Kiladze ◽  
V. Kukhianidze ◽  
G. Ramishvili

Abstract. Javakheti Highland is one of the most seismic active regions of the Caucasus. The majority of earthquakes observed throughout the region occur within this small area (f = 40.8° – 41.8° ; l = 43.3° – 44.3°). One can expect that exclusive seismic activity of Javakheti Highland testifies to global geophysical processes which take place throughout the Caucasus region. Based on the above-mentioned, of interest was to study variation with time of the number of earthquakes occurring in Javakheti region. We analysed some 695 relatively small earthquakes (2.5 < M < 6.0) observed in Javalkheti Highland within the period of 1961–1992 with regard to large earthquakes M > 6.0 of the region which occurred in the same period. It was found that each large earthquake of the Caucasus is anticipated by clear precursor in a form of an anomalous change in the number of relatively small earthquakes in Javakheti Highland.


2020 ◽  
Author(s):  
Makiko Ohtani

&lt;p&gt;Following large earthquakes, postseismic crustal deformations are often observed for more than years. They include the afterslip and the viscoelastic deformation of the crust and the upper mantle, activated by the coseismic stress change. The viscoelastic deformation gives the stress change on the neighboring faults, hence affects the seismic activity of the surrounding area, for a long period after the large earthquake. So, estimating the viscoelastic deformation after the large earthquakes is important.&lt;/p&gt;&lt;p&gt;In order to estimate the time evolution of the viscoelastic deformation after a large earthquake, we also need to know the viscoelastic structure around the area. Recently, the Ensemble Kalman filter method (EnKF), a sequential data assimilation method, starts to be used for the crustal deformation data to estimate the physical variables (van Dinther et al., 2019, Hirahara and Nishikiori, 2019). With data assimilation, we get a more provable estimation by combining the data and the time-forward model than only using the data. Hirahara and Nishikiori (2019) used synthetic data and showed that EnKF could effectively estimate the frictional parameters on the SSE (slow slip event) fault, addition to the slip velocity. In the present study, I applied EnKF to estimate the viscosity and the inelastic strain after a large earthquake, both the physical property and the variables.&lt;/p&gt;&lt;p&gt;First, I constructed the forward model simulating the evolution of the viscoelastic deformation, following the equivalent body force method (Barbot and Fialko, 2010; Barbot et al., 2017). This method is appropriate for applying EnKF, because the ground surface deformation rate is represented by the inelastic strain at the moment, and the history of the strain is not required. Then, we applied EnKF based on the forward model and executed some numerical experiments using a synthetic postseismic crustal deformation data.&lt;/p&gt;&lt;p&gt;In this presentation, I show the result of a simple setting. I assumed the medium to be two layers with a homogeneous viscoelastic region underlying an elastic region. The synthetic data is made by giving a slip on a fault at time &lt;em&gt;t&lt;/em&gt; = 0 and simulating the time evolution of the ground surface deformation. For assimilation, I assumed that the slip on the fault and the stress distribution just after the large earthquake is known. Then we executed the assimilation every 30 days after the large earthquake. I found that I can get a good estimation of the viscosity after &lt;em&gt;t&lt;/em&gt; &gt; 150 days.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document