scholarly journals Electrical characteristics and environmental conditions of lightning-ignited fires in the Iberian Peninsula and Mediterranean France between 2009 and 2015

Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler Lopez ◽  
Francisco J. Gordillo-Vázquez ◽  
Javier Navarro-Gonzalez ◽  
...  

<p>About 5% of the wildfires in the Mediterranean basin are produced by lightning [1]. Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. The occurrence of lightning-caused fires is closely related with intense drought periods and high temperatures [2]. Therefore, drier conditions and higher temperatures in a changing climate are expected to lead to a future increase in lightning-ignited fires occurrence. The development of a lightning-ignited fire parameterization for Earth system models arises as a necessary tool to predict the future occurrence of these extreme events and to study their impact on atmospheric chemistry.</p><p>Long Continuing Current lightning (LCC-lightning), preferable taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. This was originally proposed by McEachron and Itagenguth in 1942 [3] working with laboratory sparks, which suggested that ignition by natural lightning is usually caused by a discharge having an unusual long-continuing current phase. Later in 1967 this hypothesis was confirmed by Fuquay <em>et al.</em> [4].</p><p>In this work, we analyse three fire databases of lightning-ignited fires in Spain, Portugal and Southern France between 2009 and 2015. Furthermore lightning measurements from the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN), and land and atmospheric variables from the new ERA-5 reanalysis are combined to investigate the electrical characteristics and environmental conditions of the fires. This preliminary data analysis will be useful to set new relationships between the characteristics of thunderstorms and the initiation of wildfires. It is the first step towards the development of a detailed lightning-ignited fire parameterization for the atmospheric chemistry-climate model EMAC.</p><p>[1] Vázquez, A., and Moreno, J. M. (1998). Patterns of lightning-, and people-caused fires in peninsular Spain. International Journal of Wildland Fire, 8(2), 103-115.</p><p>[2] Pineda, N., and Rigo, T. (2017). The rainfall factor in lightning-ignited wildfires in Catalonia. Agricultural and Forest Meteorology, 239, 249-263.</p><p>[3] McEachron, K. B., and Itagenguth, J. It (1942), Effect of lightning on thin metal surfaces, AIEE Trans., 61, 559-564, 1942.</p><p>[4] Fuquay, D. M., Baughman R. G, Taylor, A. R. and Hawe, R. G. (1967). Characteristics of seven lightning discharges that caused forest fires. Journal of Geophysical Research, 72 (24).</p>

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Nicholas F. McCarthy ◽  
Ali Tohidi ◽  
Yawar Aziz ◽  
Matt Dennie ◽  
Mario Miguel Valero ◽  
...  

Scarcity in wildland fire progression data as well as considerable uncertainties in forecasts demand improved methods to monitor fire spread in real time. However, there exists at present no scalable solution to acquire consistent information about active forest fires that is both spatially and temporally explicit. To overcome this limitation, we propose a statistical downscaling scheme based on deep learning that leverages multi-source Remote Sensing (RS) data. Our system relies on a U-Net Convolutional Neural Network (CNN) to downscale Geostationary (GEO) satellite multispectral imagery and continuously monitor active fire progression with a spatial resolution similar to Low Earth Orbit (LEO) sensors. In order to achieve this, the model trains on LEO RS products, land use information, vegetation properties, and terrain data. The practical implementation has been optimized to use cloud compute clusters, software containers and multi-step parallel pipelines in order to facilitate real time operational deployment. The performance of the model was validated in five wildfires selected from among the most destructive that occurred in California in 2017 and 2018. These results demonstrate the effectiveness of the proposed methodology in monitoring fire progression with high spatiotemporal resolution, which can be instrumental for decision support during the first hours of wildfires that may quickly become large and dangerous. Additionally, the proposed methodology can be leveraged to collect detailed quantitative data about real-scale wildfire behaviour, thus supporting the development and validation of fire spread models.


2015 ◽  
Vol 15 (2) ◽  
pp. 829-843 ◽  
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment–Fourier transform spectrometer (ACE–FTS). The SSD was negative at altitudes of 20–30 km (−0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


2020 ◽  
Author(s):  
Eva Nowatzki ◽  
Jan-Peter Schulz ◽  
Ruben Seibert ◽  
Marius Schmidt ◽  
Mingyue Zhang ◽  
...  

2020 ◽  
Author(s):  
Larry Wayne Horowitz ◽  
Vaishali Naik ◽  
Fabien Paulot ◽  
Paul A Ginoux ◽  
John P Dunne ◽  
...  

2016 ◽  
Author(s):  
Christiane Hofmann ◽  
Astrid Kerkweg ◽  
Peter Hoor ◽  
Patrick Jöckel

Abstract. Transport of air masses from the stratosphere to the troposphere along tropopause folds can lead to peaked ozone concentrations at ground level and hereby influence the long-term trend of tropospheric ozone. To improve the understanding of responsible processes and preferred regions of exchange, transient and reversible exchange processes in the vicinity of a tropopause fold are analysed on the basis of a case study. The global and regional atmospheric chemistry model system MECO(n), which couples the limited-area atmospheric chemistry and climate model COSMO-CLM/MESSy to the global model ECHAM5/MESSy for Atmospheric Chemistry (EMAC) is applied. Using similar process parametrisations in both model instances, the system allows for very consistent, simultaneous simulations at different spatial resolutions. Simulated ozone enhancements at ground level, caused by descending stratospheric air masses, are evaluated with observational data. Because of the coarse resolution of the global model, the observed ozone enhancements are not captured by the global model instance. However, the results of the finer resolved, regional model instance coincide well with the measurements. Based on the combination of Eulerian and Lagrangian analysis methods it is shown that stratosphere-troposphere-exchange (STE) in the vicintity of the tropopause fold occurs in regions of turbulence and diabatic processes. Within the framework of a Lagrangian study the efficiency of mixing along a tropopause fold is quantified, showing that almost all (97 %) of the air masses originating in the tropopause fold are transported into the troposphere during the following two days.


2015 ◽  
Vol 24 (5) ◽  
pp. 723 ◽  
Author(s):  
Brian J. Viner ◽  
Tim Jannik ◽  
Daniel Stone ◽  
Allan Hepworth ◽  
Luke Naeher ◽  
...  

Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 × 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. This approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.


2018 ◽  
Vol 11 (6) ◽  
pp. 2033-2048 ◽  
Author(s):  
Richard Hyde ◽  
Ryan Hossaini ◽  
Amber A. Leeson

Abstract. Clustering – the automated grouping of similar data – can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model–observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry–climate model (CCM) output of tropospheric ozone – an important greenhouse gas – from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ∼ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ∼ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere – where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and useful framework in which to assess and visualise model spread, offering insight into geographical areas of agreement among models and a measure of diversity across an ensemble. Finally, we discuss caveats of the clustering techniques and note that while we have focused on tropospheric ozone, the principles underlying the cluster-based MMMs are applicable to other prognostic variables from climate models.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 317 ◽  
Author(s):  
Hengyi Liu ◽  
Shi Qiu ◽  
Wansheng Dong

VHF (Very High Frequency) lightning interferometers can locate and observe lightning discharges with a high time resolution. Especially the appearance of continuous interferometers makes the 2-D location of interferometers further improve in time resolution and completeness. However, there is uncertainty in the conclusion obtained by simply analyzing the 2-D locating information. Without the support of other 3-D total lightning locating networks, the 2-station interferometer becomes an option to obtain 3-D information. This paper introduces a 3-D lightning location method of a 2-station broadband interferometer, which uses the theodolite wind measurement method for reference, and gives the simulation results of the location accuracy. Finally, using the multi-baseline continuous 2-D locating method and the 3-D locating method, the locating results of one intra-cloud flash and the statistical results of the initiation heights of 61 cloud-to-ground flashes and 80 intra-cloud flashes are given. The results show that the two-station interferometer has high observation accuracy on both sides of the connection between the two sites. The locating accuracy will deteriorate as the distance between the radiation source and the two stations increases or the height decreases. The actual locating results are similar to those of the existing VHF TDOA (Time Difference of Arrival) lightning locating network.


2005 ◽  
Vol 23 (2) ◽  
pp. 277-290 ◽  
Author(s):  
C. J. Rodger ◽  
J. B. Brundell ◽  
R. L. Dowden

Abstract. An experimental VLF World-Wide Lightning Location (WWLL) network has been developed through collaborations with research institutions across the globe. The aim of the WWLL is to provide global real-time locations of lightning discharges, with >50% CG flash detection efficiency and mean location accuracy of <10km. While these goals are essentially arbitrary, they do define a point where the WWLL network development can be judged a success, providing a breakpoint for a more stable operational mode. The current network includes 18 stations which cover much of the globe. As part of the initial testing phase of the WWLL the network operated in a simple mode, sending the station trigger times into a central processing point rather than making use of the sferic Time of Group Arrival (TOGA). In this paper the location accuracy of the post-TOGA algorithm WWLL network (after 1 August 2003) is characterised, providing estimates of the globally varying location accuracy for this network configuration which range over 1.9-19km, with the global median being 2.9km, and the global mean 3.4km. The introduction of the TOGA algorithm has significantly improved the location accuracies. The detection efficiency of the WWLL is also considered. In the selected region the WWLL detected ~13% of the total lightning, suggesting a ~26% CG detection efficiency and a ~10% IC detection efficiency. Based on a comparison between all WWLL good lightning locations in February-April 2004, and the activity levels expected from satellite observations we estimate that the WWLL is currently detecting ~2% of the global total lightning, providing good locations for ~5% of global CG activity. The existing WWLL network is capable of providing real-time positions of global thunderstorm locations in its current form.


2014 ◽  
Vol 7 (5) ◽  
pp. 2503-2516 ◽  
Author(s):  
K. Klingmüller ◽  
B. Steil ◽  
C. Brühl ◽  
H. Tost ◽  
J. Lelieveld

Abstract. The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components, such as absorbing black carbon and, predominantly scattering sulfates. Using a new column version of the aerosol optical properties and radiative-transfer code of the ECHAM/MESSy atmospheric-chemistry–climate model (EMAC), we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT (AERosol OPTical properties) submodel, which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well-mixed aerosol is a good approximation for particles with a black-carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005, we calculate that the global aerosol direct radiative forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.


Sign in / Sign up

Export Citation Format

Share Document