Seasonal effects of additional HONO sources and the heterogeneous reactions of N2O5 on nitrate in the North China Plain

Author(s):  
Yu Qu ◽  
Junling An

<p>We coupled the heterogeneous hydrolysis of N<sub>2</sub>O<sub>5</sub> into the newly updated Weather Research and Forecasting model with Chemistry (WRF-Chem) to reveal the relative importance of the hydrolysis of N<sub>2</sub>O<sub>5</sub> and additional nitrous acid (HONO) sources for the formation of nitrate during high PM<sub>2.5</sub> events in the North China Plain (NCP) in four seasons. The results showed that additional HONO sources produced the largest nitrate concentrations in winter and negligible nitrates in summer, leading to a 10% enhancement of a PM<sub>2.5</sub> peak in southern Beijing and a 15% enhancement in southeastern Hebei in winter. In contrast, the hydrolysis of N<sub>2</sub>O<sub>5</sub> produced high nitrate in summer and low nitrate in winter, with the largest contribution of nearly 20% for a PM<sub>2.5</sub> peak in southeastern Hebei in summer. During PM<sub>2.5 </sub>explosive growth events, the additional HONO sources played a key role in nitrate increases in southern Beijing and southwestern Hebei in winter, whereas the hydrolysis of N<sub>2</sub>O<sub>5 </sub>contributed the most to a rapid increase in nitrate in other seasons. HONO photolysis produced more hydroxyl radicals, which were greater than 1.5 μg m<sup>-3</sup> h<sup>-1</sup> in the early explosive stage and led to a rapid nitrate increase at the southwestern Hebei sites in winter, while the heterogeneous reaction of N<sub>2</sub>O<sub>5</sub> contributed greatly to a significant increase in nitrate in summer. The above results suggest that the additional HONO sources and the heterogeneous hydrolysis of N<sub>2</sub>O<sub>5</sub> contributed the most to nitrate formation in NCP in winter and summer, respectively.</p>

2018 ◽  
Author(s):  
Wanyun Xu ◽  
Ye Kuang ◽  
Chunsheng Zhao ◽  
Jiangchuan Tao ◽  
Gang Zhao ◽  
...  

Abstract. The study of atmospheric nitrous acid (HONO), which is the primary source of OH radicals, is crucial to atmospheric photochemistry and heterogeneous chemical processes. The heterogeneous NO2 chemistry under haze conditions was pointed out to be one of the missing sources of HONO on the North China Plain, producing sulfate and nitrate in the process. However, controversy exists between various proposed mechanisms, mainly debating on whether SO2 directly takes part in the HONO production process and what roles NH3 and the pH value play in it. In this paper, never before seen explosive HONO production (maximum rate: 16 ppb/hour) was reported and evidence was found for the first time in field measurements during fog episodes (usually with pH > 5) and haze episodes under high relative humidity (usually with pH 


2021 ◽  
Vol 21 (6) ◽  
pp. 4521-4539
Author(s):  
Jiayun Li ◽  
Liming Cao ◽  
Wenkang Gao ◽  
Lingyan He ◽  
Yingchao Yan ◽  
...  

Abstract. For the first time in the North China Plain (NCP) region, we investigated the seasonal variations in submicron particles (NR-PM1) and their chemical composition at a background mountainous site of Xinglong using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer. The average concentration of NR-PM1 was highest in autumn (15.1 µg m−3) and lowest in summer (12.4 µg m−3), with a greater abundance of nitrate in spring (34 %), winter (31 %) and autumn (34 %) and elevated organics (40 %) and sulfate (38 %) in summer. PM1 in Xinglong showed higher acidity in summer and moderate acidity in spring, autumn and winter, with average pH values of 2.7±0.6, 4.2±0.7, 3.5±0.5 and 3.7±0.6, respectively, which is higher than those estimated in the United States and Europe. The size distribution of all PM1 species showed a consistent accumulation mode peaking at approximately 600–800 nm (dva), indicating a highly aged and internally mixed nature of the background aerosols, which was further supported by the source appointment results using positive matrix factorization and multilinear engine analysis. Significant contributions of aged secondary organic aerosol (SOA) in organic aerosol (OA) were resolved in all seasons (>77 %), especially in summer. The oxidation state and the process of evolution of OAs in the four seasons were further investigated, and an enhanced carbon oxidation state (−0.45–0.10) and O/C (0.54–0.75) and OM/OC (1.86–2.13) ratios – compared with urban studies – were observed, with the highest oxidation state appearing in summer, likely because of the relatively stronger photochemical processing that dominated the formation processes of both less oxidized OA (LO-OOA) and more oxidized OA (MO-OOA). Aqueous-phase processing also contributed to the SOA formation and prevailed in winter, with the share to MO-OOA being more important than that to LO-OOA. In addition, regional transport also played an important role in the variations in SOA. Especially in summer, continuous increases in SOA concentration as a function of odd oxygen (Ox=O3+NO2) were found to be associated with the increases in wind speed. Furthermore, backward trajectory analysis showed that higher concentrations of submicron particles were associated with air masses transported short distances from the southern regions in all four seasons, while long-range transport from Inner Mongolia (western and northern regions) also contributed to summertime particulate pollution in the background areas of the NCP. Our results illustrate that the background particles in the NCP are influenced significantly by aging processes and regional transport, and the increased contribution of aerosol nitrate highlights how regional reductions in nitrogen oxide emissions are critical for remedying occurrence of nitrate-dominated haze events over the NCP.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Gangqiang Zhang ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Weiwei Lei

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.


2021 ◽  
Vol 20 (6) ◽  
pp. 1687-1700
Author(s):  
Li-chao ZHAI ◽  
Li-hua LÜ ◽  
Zhi-qiang DONG ◽  
Li-hua ZHANG ◽  
Jing-ting ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document