Spectrally resolved OLR from IASI measurements

Author(s):  
Simon Whitburn ◽  
Lieven Clarisse ◽  
Sophie Bauduin ◽  
Steven Dewitte ◽  
Maya George ◽  
...  

<p>The Earth’s Outgoing Longwave Radiation (OLR) is a key component in the study of climate feedbacks and processes. As part of the Earth’s radiation budget, it reflects how the Earth-atmosphere system compensates the incoming solar radiation at the top of the atmosphere. It can be retrieved from the radiance intensities measured by satellite sounders and integrated over all the zenith angles of observation. Since satellite instruments generally acquire the radiance at a limited number of viewing angle directions and because the radiance field is not isotropic, the conversion is however not straightforward. This problem is usually overcome by the use of empirical angular distribution models (ADMs) developed for different scene types that directly link the directional radiance measurement to the corresponding OLR.</p><p>OLR estimates from dedicated broadband instruments are available since the mid-1970s; however, such instruments only provide an integrated OLR estimate over a broad spectral range. They are therefore not well suited for tracking separately the impact of the different parameters affecting the OLR (including greenhouse gases), making it difficult to track down deficiencies in climate models. Currently, several hyperspectral instruments in space acquire radiances in the thermal infrared spectral range, and in principle, these should allow to better constrain the OLR. However, as these instruments were not specifically designed to measure the OLR, there are several challenges to overcome. Here we propose a new retrieval algorithm for the estimation of the spectrally resolved OLR from measurements made by the IASI sounder on board the Metop satellites. It is based on a set of spectrally resolved ADMs developed from synthetic spectra for a large selection of scene types associated with different states of the atmosphere and the surface. Atmospheric and surface parameters are derived from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset and selected using a dissimilarity-based subset selection algorithm. These spectral ADMs are then used to convert the measured IASI radiances into spectral OLR.</p><p>We then evaluate how the IASI OLR compare with the CERES and the AIRS integrated and spectral OLR. We analyze the interannual variations in OLR over 10 years of IASI measurements for selected spectral channels using EOF analysis and we connect them with well-known climate phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO).</p>

2021 ◽  
Author(s):  
Simon Whitburn ◽  
Lieven Clarisse ◽  
Andy Delcloo ◽  
Steven Dewitte ◽  
Marie Bouillon ◽  
...  

<p>The Earth's Outgoing Longwave Radiation (OLR) is a key component in the study of climate. As part of the Earth's radiation budget, it reflects how the Earth-atmosphere system compensates the incoming solar radiation at the top of the atmosphere. At equilibrium, the two quantities compensate each other on average. Any variation of the climate drivers (e.g. greenhouse gases) causes an energy imbalance which leads to a climate response (e.g. surface temperature increase), with the effect of bringing the radiation budget back to equilibrium. Considerable improvements in our understanding of the Earth-atmosphere system and of its long-term changes have been achieved in the last four decades through the exploitation of measurements from dedicated broadband instruments. However, such instruments only provide spectrally integrated OLR over a broad spectral range and are therefore not well suited for tracking separately the impact of the different parameters affecting the OLR.</p><p>Better constraints can, in principle, be obtained from spectrally resolved OLR (i.e. the integrand of broadband OLR, in units of W m<sup>-2</sup> cm<sup>-1</sup>) derived from infrared hyperspectral sounders. Recently, a dedicated algorithm was developed to derive clear-sky spectrally resolved OLR from the Infrared Atmospheric Sounding Interferometer (IASI) at the 0.25 cm<sup>-1</sup> native spectral sampling of the L1C spectra (Whitburn et al. 2020).  Here, we analyze the changes in 10 years (2008-2017) of the IASI-derived OLR and we relate them to known changes in greenhouse gases concentrations (CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O, …) and climate phenomena activity such as El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).</p><p>Whitburn, S., Clarisse, L., Bauduin, S., George, M., Hurtmans, D., Safieddine, S., Coheur, P. F., and Clerbaux, C. (2020). <strong>Spectrally Resolved Fuxes from IASI Data: Retrieval algorithm for Clear-Sky Measurements</strong>. Journal of Climate. doi: 10.1175/jcli-d-19-0523.1</p>


1994 ◽  
Vol 12 (2/3) ◽  
pp. 240-253 ◽  
Author(s):  
F. Parol ◽  
J. C. Buriez ◽  
D. Crétel ◽  
Y. Fouquart

Abstract. Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m) have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%); it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.


2020 ◽  
Vol 14 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Ramdane Alkama ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
Gregory Duveiller ◽  
...  

Abstract. Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback.


2012 ◽  
Vol 25 (20) ◽  
pp. 7083-7099 ◽  
Author(s):  
S. C. Hardiman ◽  
N. Butchart ◽  
T. J. Hinton ◽  
S. M. Osprey ◽  
L. J. Gray

Abstract The importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960–2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño–Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.


2019 ◽  
Vol 19 (11) ◽  
pp. 7927-7937
Author(s):  
Christophe Bellisario ◽  
Helen E. Brindley ◽  
Simon F. B. Tett ◽  
Rolando Rizzi ◽  
Gianluca Di Natale ◽  
...  

Abstract. Far-infrared (FIR: 100cm-1<wavenumber, ν<667 cm−1) radiation emitted by the Earth and its atmosphere plays a key role in the Earth's energy budget. However, because of a lack of spectrally resolved measurements, radiation schemes in climate models suffer from a lack of constraint across this spectral range. Exploiting a method developed to estimate upwelling far-infrared radiation from mid-infrared (MIR: 667cm-1<ν<1400 cm−1) observations, we explore the possibility of inferring zenith FIR downwelling radiances in zenith-looking observation geometry, focusing on clear-sky conditions in Antarctica. The methodology selects a MIR predictor wavenumber for each FIR wavenumber based on the maximum correlation seen between the different spectral ranges. Observations from the REFIR-PAD instrument (Radiation Explorer in the Far Infrared – Prototype for Application and Development) and high-resolution radiance simulations generated from co-located radio soundings are used to develop and assess the method. We highlight the impact of noise on the correlation between MIR and FIR radiances by comparing the observational and theoretical cases. Using the observed values in isolation, between 150 and 360 cm−1, differences between the “true” and “extended” radiances are less than 5 %. However, in spectral bands of low signal, between 360 and 667 cm−1, the impact of instrument noise is strong and increases the differences seen. When the extension of the observed spectra is performed using regression coefficients based on noise-free radiative transfer simulations the results show strong biases, exceeding 100 % where the signal is low. These biases are reduced to just a few percent if the noise in the observations is accounted for in the simulation procedure. Our results imply that while it is feasible to use this type of approach to extend mid-infrared spectral measurements to the far-infrared, the quality of the extension will be strongly dependent on the noise characteristics of the observations. A good knowledge of the atmospheric state associated with the measurements is also required in order to build a representative regression model.


2005 ◽  
Vol 5 (3) ◽  
pp. 755-765 ◽  
Author(s):  
S. Ghosh ◽  
S. Osborne ◽  
M. H. Smith

Abstract. Owing to their extensive spatial coverage, stratocumulus clouds play a crucial role in the radiation budget of the earth. Climate models need an accurate characterisation of stratocumulus in order to provide an accurate forecast. However, remote sensing as well as in-situ observations reveal that on several occasions, cumulus clouds present below the stratocumulus, often have a significant impact on the main stratocumulus microphysical properties. This was observed during the ACE-2 (Aerosol Characterisation Experiment-2) campaign designed to study the impact of polluted continental air on stratocumulus formation. In this paper we used a detailed micro-physical chemical parcel model to quantify the extent of this cumulus-stratocumuls coupling. In addition, we made extensive use of microphysical observations from the C-130 aircraft that was operated during ACE-2. For the ACE-2 case studies considered in this paper, our analysis revealed that the chemical, microphysical and optical characteristics of the main stratocumulus cloud deck had significant contributions from cumulus clouds that often penetrated the stratocumulus deck. The amount of fine mode ionic species, the average droplet number concentrations, the effective radii and the optical depths during the flight A562 (when cumulus clouds interacted with the main stratocumulus) were estimated and model runs that included this effect yielded microphysical and optical properties which compared more favourably with the observations than the runs which did not. This study highlights the importance of including these cumulus effects in stratocumulus related modelling studies.


2021 ◽  
Author(s):  
Eleftheria Exarchou ◽  
Pablo Ortega ◽  
Maria Belén Rodrıguez de Fonseca ◽  
Teresa Losada Doval ◽  
Irene Polo Sanchez ◽  
...  

&lt;p&gt;El Ni&amp;#241;o&amp;#8211;Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Ni&amp;#241;os (Ni&amp;#241;as) favor the development of Pacific Ni&amp;#241;as (Ni&amp;#241;os) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.&lt;/p&gt;


Author(s):  
Philip J Rasch ◽  
Simone Tilmes ◽  
Richard P Turco ◽  
Alan Robock ◽  
Luke Oman ◽  
...  

We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy reaching the surface, and this may influence ecosystems. The impact of geoengineering on these components of the Earth system has not yet been studied. Representations for the formation, evolution and removal of aerosol and distribution of particle size are still very crude, and more work will be needed to gain confidence in our understanding of the deliberate production of this class of aerosols and their role in the climate system.


2015 ◽  
Vol 28 (5) ◽  
pp. 2080-2095 ◽  
Author(s):  
Jieshun Zhu ◽  
Bohua Huang ◽  
Ben Cash ◽  
James L. Kinter ◽  
Julia Manganello ◽  
...  

Abstract This study examines El Niño–Southern Oscillation (ENSO) prediction in Project Minerva, a recent collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the European Centre for Medium-Range Weather Forecasts (ECMWF). The focus is primarily on the impact of the atmospheric horizontal resolution on ENSO prediction, but the effect from different ensemble sizes is also discussed. Particularly, three sets of 7-month hindcasts performed with ECMWF prediction system are compared, starting from 1 May (1 November) during 1982–2011 (1982–2010): spectral T319 atmospheric resolution with 15 ensembles, spectral T639 with 15 ensembles, and spectral T319 with 51 ensembles. The analysis herein shows that simply increasing either ensemble size from 15 to 51 or atmospheric horizontal resolution from T319 to T639 does not necessarily lead to major improvement in the ENSO prediction skill with current climate models. For deterministic prediction skill metrics, the three sets of predictions do not produce a significant difference in either anomaly correlation or root-mean-square error (RMSE). For probabilistic metrics, the increased atmospheric horizontal resolution generates larger ensemble spread, and thus increases the ratio between the intraensemble spread and RMSE. However, there is little change in the categorical distributions of predicted SST anomalies, and consequently there is little difference among the three sets of hindcasts in terms of probabilistic metrics or prediction reliability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eleftheria Exarchou ◽  
Pablo Ortega ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Irene Polo ◽  
...  

AbstractEl Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.


Sign in / Sign up

Export Citation Format

Share Document