scholarly journals On the importance of cumulus penetration on the microphysical and optical properties of stratocumulus clouds

2005 ◽  
Vol 5 (3) ◽  
pp. 755-765 ◽  
Author(s):  
S. Ghosh ◽  
S. Osborne ◽  
M. H. Smith

Abstract. Owing to their extensive spatial coverage, stratocumulus clouds play a crucial role in the radiation budget of the earth. Climate models need an accurate characterisation of stratocumulus in order to provide an accurate forecast. However, remote sensing as well as in-situ observations reveal that on several occasions, cumulus clouds present below the stratocumulus, often have a significant impact on the main stratocumulus microphysical properties. This was observed during the ACE-2 (Aerosol Characterisation Experiment-2) campaign designed to study the impact of polluted continental air on stratocumulus formation. In this paper we used a detailed micro-physical chemical parcel model to quantify the extent of this cumulus-stratocumuls coupling. In addition, we made extensive use of microphysical observations from the C-130 aircraft that was operated during ACE-2. For the ACE-2 case studies considered in this paper, our analysis revealed that the chemical, microphysical and optical characteristics of the main stratocumulus cloud deck had significant contributions from cumulus clouds that often penetrated the stratocumulus deck. The amount of fine mode ionic species, the average droplet number concentrations, the effective radii and the optical depths during the flight A562 (when cumulus clouds interacted with the main stratocumulus) were estimated and model runs that included this effect yielded microphysical and optical properties which compared more favourably with the observations than the runs which did not. This study highlights the importance of including these cumulus effects in stratocumulus related modelling studies.

2004 ◽  
Vol 4 (4) ◽  
pp. 4611-4640
Author(s):  
S. Ghosh ◽  
S. Osborne ◽  
M. H. Smith

Abstract. Owing to their extensive spatial coverage, stratocumulus clouds play a crucial role in the radiation budget of the earth. Climate models need an accurate characterisation of stratocumulus in order to provide an accurate forecast. However, remote sensing as well as in-situ observations reveal that on several occasions, cumulus clouds present below the stratocumulus, often have a significant impact on the main stratocumulus microphysical properties. This was observed during the ACE-2 (Aerosol Characterisation Experiment 2) campaign designed to study the impact of polluted continental air on stratocumulus formation. In this paper we used a detailed micro-physical chemical parcel model to quantify the extent of this cumulus-stratocumuls coupling. In addition, we made extensive use of microphysical observations from the C-130 aircraft that was operated during ACE-2. For the ACE-2 case studies considered in this paper, our analysis revealed that the chemical, microphysical and optical characteristics of the main stratocumulus cloud deck had significant contributions from cumulus clouds that often penetrated the stratocumulus deck. The amount of fine mode ionic species, the average droplet number concentrations, the effective radii and the optical depths during the flight A562 (when cumulus clouds interacted with the main stratocumulus) were estimated and model runs that included this effect yielded microphysical and optical properties which compared more favourably with the observations than the runs which did not. This study highlights the importance of including these cumulus effects in stratocumulus related modelling studies.


2020 ◽  
Vol 14 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Ramdane Alkama ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
Gregory Duveiller ◽  
...  

Abstract. Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback.


2020 ◽  
Author(s):  
Periklis Drakousis ◽  
Marios-Bruno Korras-Carraca ◽  
Hiren Jethva ◽  
Omar Torres ◽  
Nikos Hatzianastassiou

<p>Aerosol measurements are carried out worldwide in order to reduce the uncertainties about the impact of aerosols on climate. Over the past two decades, different methods (ground- or satellite-based) for measuring aerosol properties have been developed, covering a variety of approaches with different temporal and spatial scales, which can be considered complementary. Aerosol optical properties are essential for assessing the effects of aerosols on radiation and climate. Aerosol single scattering albedo (SSA), along with optical depth and asymmetry parameter, is one of the three key optical properties that are necessary for radiation transfer and climate models. At the same time, SSA strongly depends on different aerosol types, thus enabling the identification of these different aerosol particles. However, despite the strong need for aerosol SSA products with global and climatological coverage, and the significant progress in retrieving SSA from satellite measurements, the satellite SSA retrievals are still subjected to uncertainties.</p><p>In this study, we perform an evaluation of the OMAERUVd (PGE Version V1.8.9.1) daily L3 (1° x 1° latitude-longitude) aerosol SSA data, which are based on the enhanced two-channel OMAERUV algorithm that essentially uses the ultraviolet radiance data from Aura/Ozone Monitoring Instrument (OMI), through comparisons against daily SSA products from 541 globally distributed Aerosol Robotic Network (AERONET) stations for a 15-year period (2005-2019). The comparison is performed between the available OMAERUVd SSA data at 354 nm, 388 nm, and 500 nm, and the AERONET SSA data at 440 nm (or 443 nm). The comparison is made on an annual and seasonal basis in order to reveal possible seasonally dependent patterns, as well as on a climatological and a year-to-year basis. The statistical metrics, such as Coefficient of Correlation (R) and Bias, are computed for individual AERONET stations as well as for all stations. The effect of availability of common OMI and AERONET data pairs on the comparison is assessed by making comparisons when at least 10, 50 and 100 common pairs are available.</p><p>The results show that about 50% (75%) of OMI-AERONET matchups agree within the absolute difference of ±0.03 (±0.05) for the 500 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA. The corresponding percentage for the 388 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA increases to 58% (81%), while the corresponding numbers for the 354 nm SSA OMI and the 440 nm (or 443 nm) AERONET are 43% (67%). It is found that in overall, OMI tends mainly to overestimate (underestimate) SSA for the 500 nm (354 nm) products in comparison to AERONET 440 nm (or 443 nm) with a total bias of 0.025 (-0.024), or 2.7% (2.6%) in relative percentage terms with respect to AERONET (mean AERONET value equal to 0.908), and an overall R value of 0.399 (0.386). At 388 nm, OMI tends to retrieve higher SSA over regions where biomass burning occurs, against lower SSA values elsewhere, with overall bias and R values equal to -0.002 (0.22%) and 0.395, respectively.</p>


2020 ◽  
Author(s):  
Nikolai Golovushkin ◽  
Igor Konovalov ◽  
Matthias Beekmann

<p>Aerosol from open biomass burning (BB) is known to strongly impact the Earth radiation budget. Therefore, a good knowledge of its optical properties and their evolution is an important prerequisite for accurate assessments of contributions of various factors to climate change by means of chemistry-transport and climate models. As a major component of typical BB aerosol is organic matter, the atmospheric evolution of BB aerosol can be strongly affected by the physical and chemical processes governing the gas-particle partitioning of organic compounds. Recently, it has been shown [1] that these processes can give rise to strongly nonlinear behavior of mass concentration of organic fraction of BB aerosol during its atmospheric lifetime. It has been also argued that chemical and physical nonlinearities can explain part of the observed diversity of the effects of BB aerosol atmospheric aging. The present study has extended the previous analysis of the nonlinear behavior of BB aerosol, focusing on the evolution of BB aerosol optical properties, such as, specifically, mass absorption and scattering efficiencies (MAE and MSE) in the near-UV and optical wavelength ranges. The evolution of aerosol in BB plumes was simulated with the MDMOA [1] microphysical box model that involves a schematic parameterization of the dilution process and represents the oxidation and gas-particle partitioning processes within the volatility basis set (VBS) framework. The Mie-theory-based simulations of the optical properties of aging BB aerosol were performed with the OPTSIM module [2] coupled with MDMOA. The simulations show that both MAE and MSE can exhibit strong and diverse changes during BB aerosol evolution mostly due to significant changes in the aerosol particle size distribution. Furthermore, similar to the mass concentration, both MAE and MSC of the aged BB aerosol depend in a nonlinear manner on the initial BB aerosol concentration and the initial size of a smoke plume and are sensitive to the choice of a concrete VBS scheme. The results of this study may have important implications for modeling of radiative effects of BB aerosol with chemistry-transport and climate models and for interpretation of remote observations of BB aerosol.</p><p>The study was supported by the Russian Foundation for Basic Research (grant No. 18-05-00911).</p><p>References</p><ol><li>Konovalov, I. B., Beekmann, M., Golovushkin, N. A., and Andreae, M. O.: Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis, Atmos. Chem. Phys., 19, 12091–12119, https://doi.org/10.5194/acp-19-12091-2019, 2019.</li> <li>Stromatas, S., Turquety, S., Menut, L., Chepfer, H., Péré, J. C., Cesana, G., and Bessagnet, B.: Lidar signal simulation for the evaluation of aerosols in chemistry transport models, Geosci. Model Dev., 5, 1543–1564, https://doi.org/10.5194/gmd-5-1543-2012, 2012.</li> </ol>


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


Author(s):  
Mark J. Webb ◽  
Adrian P. Lock ◽  
Christopher S. Bretherton ◽  
Sandrine Bony ◽  
Jason N. S. Cole ◽  
...  

We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed.


2008 ◽  
Vol 8 (2) ◽  
pp. 6379-6407 ◽  
Author(s):  
I. Koren ◽  
L. Oreopoulos ◽  
G. Feingold ◽  
L. A. Remer ◽  
O. Altaratz

Abstract. The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds. Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing. The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels. We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS) the average "cloud-free" reflectance at 1.65 μm increases more than 25%, the cloud reflectance decreases by half, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.


2020 ◽  
Author(s):  
Simon Whitburn ◽  
Lieven Clarisse ◽  
Sophie Bauduin ◽  
Steven Dewitte ◽  
Maya George ◽  
...  

<p>The Earth’s Outgoing Longwave Radiation (OLR) is a key component in the study of climate feedbacks and processes. As part of the Earth’s radiation budget, it reflects how the Earth-atmosphere system compensates the incoming solar radiation at the top of the atmosphere. It can be retrieved from the radiance intensities measured by satellite sounders and integrated over all the zenith angles of observation. Since satellite instruments generally acquire the radiance at a limited number of viewing angle directions and because the radiance field is not isotropic, the conversion is however not straightforward. This problem is usually overcome by the use of empirical angular distribution models (ADMs) developed for different scene types that directly link the directional radiance measurement to the corresponding OLR.</p><p>OLR estimates from dedicated broadband instruments are available since the mid-1970s; however, such instruments only provide an integrated OLR estimate over a broad spectral range. They are therefore not well suited for tracking separately the impact of the different parameters affecting the OLR (including greenhouse gases), making it difficult to track down deficiencies in climate models. Currently, several hyperspectral instruments in space acquire radiances in the thermal infrared spectral range, and in principle, these should allow to better constrain the OLR. However, as these instruments were not specifically designed to measure the OLR, there are several challenges to overcome. Here we propose a new retrieval algorithm for the estimation of the spectrally resolved OLR from measurements made by the IASI sounder on board the Metop satellites. It is based on a set of spectrally resolved ADMs developed from synthetic spectra for a large selection of scene types associated with different states of the atmosphere and the surface. Atmospheric and surface parameters are derived from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset and selected using a dissimilarity-based subset selection algorithm. These spectral ADMs are then used to convert the measured IASI radiances into spectral OLR.</p><p>We then evaluate how the IASI OLR compare with the CERES and the AIRS integrated and spectral OLR. We analyze the interannual variations in OLR over 10 years of IASI measurements for selected spectral channels using EOF analysis and we connect them with well-known climate phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO).</p>


2016 ◽  
Author(s):  
Régis Briant ◽  
Paolo Tuccella ◽  
Adrien Deroubaix ◽  
Dmitry Khvorostyanov ◽  
Laurent Menut ◽  
...  

Abstract. The presence of airborne aerosols affects the meteorology as it induces a perturbation in the radiation budget, the number of cloud condensation nuclei and the cloud micro-physics. Those effects are difficult to model at regional scale as several distinct models are usually involved. In this paper, the coupling of the CHIMERE chemistry-transport model with the WRF meteorological model using the OASIS3-MCT coupler is presented. WRF meteorological fields along with CHIMERE aerosol optical properties are exchanged through the coupler at a high frequency in order to model the aerosol direct and semidirect effects. The WRF-CHIMERE online model has a higher computational burden than both models ran separately in offline mode (up to 42 % higher). This is mainly due to some additional computations made within the models such as more frequent calls to meteorology treatment routines or calls to optical properties computations routines. On the other hand, the overall time required to perform the OASIS3-MCT exchanges is not significant compared to the total duration of the simulations. The impact of the coupling is evaluated on a case study over Europe, northern Africa, Middle East and western Asia during the Summer 2012, through comparisons of the offline and two online simulations (with and without the aerosol optical properties feedback) to observations of temperature, Aerosol Optical Depth (AOD) and surface PM10 (particulate matter with diameters lower than 10 µm) concentrations. Result shows that using the optical properties feedback induces a radiative forcing (average forcing of −4.8 W.m−2) which creates a perturbation in the average surface temperatures over desert areas (up to 2.6° locally) along with an increase of both AOD and PM10 concentrations.


2020 ◽  
Vol 20 (17) ◽  
pp. 10733-10755
Author(s):  
Nina Črnivec ◽  
Bernhard Mayer

Abstract. The treatment of unresolved cloud–radiation interactions in weather and climate models has considerably improved over the recent years, compared to conventional plane-parallel radiation schemes, which previously persisted in these models for multiple decades. One such improvement is the state-of-the-art Tripleclouds radiative solver, which has one cloud-free and two cloudy regions in each vertical model layer and is thereby capable of representing cloud horizontal inhomogeneity. Inspired by the Tripleclouds concept, primarily introduced by Shonk and Hogan (2008), we incorporated a second cloudy region into the widely employed δ-Eddington two-stream method with the maximum-random overlap assumption for partial cloudiness. The inclusion of another cloudy region in the two-stream framework required an extension of vertical overlap rules. While retaining the maximum-random overlap for the entire layer cloudiness, we additionally assumed the maximum overlap of optically thicker cloudy regions in pairs of adjacent layers. This extended overlap formulation implicitly places the optically thicker region towards the interior of the cloud, which is in agreement with the core–shell model for convective clouds. The method was initially applied on a shallow cumulus cloud field, evaluated against a three-dimensional benchmark radiation computation. Different approaches were used to generate a pair of cloud condensates characterizing the two cloudy regions, testing various condensate distribution assumptions along with global cloud variability estimate. Regardless of the exact condensate setup, the radiative bias in the vast majority of Tripleclouds configurations was considerably reduced compared to the conventional plane-parallel calculation. Whereas previous studies employing the Tripleclouds concept focused on researching the top-of-the-atmosphere radiation budget, the present work applies Tripleclouds to atmospheric heating rate and net surface flux. The Tripleclouds scheme was implemented in the comprehensive libRadtran radiative transfer package and can be utilized to further address key scientific issues related to unresolved cloud–radiation interplay in coarse-resolution atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document