Is microbial resilience to drying-rewetting driven by selection for quick colonizers?

Author(s):  
Lettice Hicks ◽  
Simon Lin ◽  
Johannes Rousk

<p>Climate change is exposing terrestrial ecosystems to more extreme drought and rainfall events, resulting in an increased frequency and intensity of drying-rewetting (D/RW) events in soils. Rewetting a dry soil induces enormous dynamics in both microbial growth and biogeochemistry, including a large pulse of CO<sub>2 </sub>release to the atmosphere. Upon D/RW, two different microbial growth responses have been identified; a more resilient response where bacteria start growing immediately with a quick recovery after rewetting and a less resilient response where there is a lag-period of up to 30 hours of near-zero growth before bacteria start to grow. The resilience of microbial growth following D/RW has important implications for the ecosystem C budget, since an extended lag-period of no growth during a time of high CO<sub>2 </sub>release will result in net soil C loss. In natural systems, it has been found that a legacy of drought led to a more resilient bacterial growth response upon rewetting, with a reduced lag-period before the onset of growth. Exposing soils to repeated cycles of D/RW in the laboratory has also been shown to shift bacterial growth responses to a more resilient type. We hypothesised that this shift in response is explained by selection for a microbial community which is quick at colonizing the labile C resources made available upon D/RW.  </p><p>In order to test our hypothesis, we pre-treated soils by exposing them to either (i) three cycles of D/RW, (ii) three pulses of glucose addition or (iii) three pulses of litter addition. The substrate additions were used to simulate the labile C release in soils during D/RW, thereby enabling us to investigate if the colonization of new substrate is the causal mechanism explaining the observed shift in bacterial resilience in soils with a history of D/RW. The pre-treated soils – along with an unamended control soil – were then exposed to the same D/RW event, with bacterial growth, fungal growth and respiration responses measured at high temporal resolution over 4 days. As previously reported, exposing the soil to a series of D/RW events resulted in a more resilient bacterial growth response, with the lag-period reduced from ca. 30 hours to an immediate initiation of growth. Pre-treating the soils with glucose reduced the lag-period before the onset of bacterial growth by ca. 50% whereas pre-treatment with litter induced only a marginally (< 10%) more resilient bacterial growth response to D/RW. Interestingly, pre-treatment of the soils with glucose and litter both induced a more resilient fungal growth response, with the responses resembling the shift in fungal resilience induced by exposing the soils to repeated cycles of D/RW. Overall, our results show that selection for quick colonizers partly explains the shift to more resilient microbial growth in soils exposed to repeated D/RW events, but further investigation is required to identify additional factors contributing to the shift in resilience.</p>

2020 ◽  
Author(s):  
Mingyue Yuan ◽  
Meng Na ◽  
Lettice Hicks ◽  
Johannes Rousk

<p>Soil microorganisms play a crucial role in the regulation of nutrient cycling, and are thought to be either limited by low nutrient availability, or by labile carbon supplied by nutrient limited plant productivity. It remains unknown how climate change will affect the rate-limiting resources for decomposer microorganisms in the Arctic, rendering feedbacks to climate change highly uncertain. In this study, we focused on the responses of soil microbial community processes to simulated climate change in a subarctic tundra system in Abisko, Sweden, using litter additions to represent arctic greening and inorganic N fertilizer additions to represent a faster nutrient cycling due to arctic warming. We hypothesized that 1) the plant community would shift and plant productivity would increase in response to N fertilization, 2) microbial process rates would be stimulated by both plant litter and fertilizer additions, and 3) the growth limiting factors for decomposer microorganisms would shift toward nutrient limitation in response to higher plant material input, and towards C-limitation in response to N-fertilizer additions.</p><p> </p><p>We assessed the responses of the plant community composition (vegetation surveys) and productivity (NDVI), microbial processes (bacterial growth, fungal growth, C and N mineralization) along with an assessment of the limiting factors for fungal and bacterial growth. The growth-limiting factors were determined by full factorial additions of nutrients (C, N, P), with measurement of microbial growth and respiration following brief incubations in the laboratory. We found that plant productivity was ca. 15% higher in the N fertilized plots. However, field-treatments had limited effects on bacterial growth, fungal growth and the fungal-to-bacterial growth ratio in soils. Field-treatments also had no significant effect on the rate of soil C mineralization, but did affect rates of gross N mineralization. Gross N mineralization was twice as high in N fertilized plots compared to the control. In control soils, bacterial growth increased 4-fold in response to C, indicating that bacterial growth was C limited. Bacterial growth remained C limited in soils from all field-treatments. However, in the N fertilized soils, the C limitation was 1.8-times greater than the control, while in soils with litter input, the C limitation was 0.83-times the control, suggesting that the N fertilized soils were moving towards stronger C-limitation and the litter addition soils were becoming less C-limited. The limiting factor for fungal growth was difficult to resolve. We presumed that the competition of fungi with bacteria decreased our resolution to detect the limiting factor. Therefore, factorial nutrient addition were combined with low amount of bacterial specific inhibitors.</p>


1995 ◽  
Vol 41 (10) ◽  
pp. 930-935 ◽  
Author(s):  
E. Dwayne Goudie ◽  
John A. Gow

Eighty regional Vibrio strains were studied for their growth responses at 13 Na+concentrations. Using a chemically defined plating medium, together with a multipoint inoculation technique, approximately 45% of the strains showed a specific growth requirement for Na+. The remaining strains grew, with a lag period, on the basal medium that contained about 2 mM background Na+. Based on the growth responses to Na+, a numerical analysis was used to explore differences between the strains. A dendrogram was produced in which the strains were grouped into four major clusters. At an equivalent level of similarity the cluster composition was not significantly different from that shown in a second dendrogram that was based on standard tests recommended in the 9th edition of Bergey's Manual of Determinative Bacteriology. The study showed that, over a range of concentrations, the growth response to Na+was taxonomically significant for Vibrio strains.Key words: Vibrio, marine bacteria, Na+requirement, growth response.


2007 ◽  
Vol 1064 ◽  
Author(s):  
Somesree GhoshMitra ◽  
Tong Cai ◽  
Santaneel Ghosh ◽  
Arup Neogi ◽  
Zhibing Hu ◽  
...  

ABSTRACTQuantum dots (QDs) are now used extensively for labeling in biomedical research due to their unique photoluminescence behavior, involving size-tunable emission color, a narrow and symmetric emission profile and a broad excitation range [1]. Uncoated QDs made of CdTe core are toxic to cells because of release of Cd2+ ions into the cellular environment. This problem can be partially solved by encapsulating QDs with polymers, like poly(N-isopropylacrylamide) (PNIPAM) or poly(ethylene glycol) (PEG). Based on biological compatibility, fast response as well as pH, temperature and magnetic field dependent swelling properties, hydrogel nanospheres has become carriers of drugs, fluorescence labels, magnetic particles for hyperthermia applications and particles that have strong optical absorption profiles for optical excitation. The toxicity of uncoated QDs are known; however, there have been a very limited number of studies specially designed to assess thoroughly the toxicity of nanosphere encapsulated QDs against QD density and dosing level.In this work, we present preliminary studies of biological effects of a novel QD based nanomaterial system on Escherichia coli (E. coli) bacteria. Cadmium chalcogenide QDs provide the most attractive fluorescence labels in comparison with routine dyes or metal complexes. Nanospheres on the other hand are the most commonly used carriers of fluorescence labels for fluorescence detection. The integration of fluorescent QDs in nanospheres therefore provides a new generation of fluorescence markers for biological assays. Hydrogels based on PNIPAM is a well known thermoresponsive polymer that undergoes a volume phase transition across the low critical solution (LCST) [2]. Therefore, the inherent temperature-sensitive swelling properties of PNIPAM offer the potentiality to control QD density within the nanospheres. In the present work, E. coli growth was monitored as E. coli served as a representation of how cells might respond in the presence of hydrogel encapsulated QDs in their growth environment. The present work describes the successful encapsulation of CdTe QDs in PNIPAM gel network. Microgel encapsulated QDs were synthesized by first preparing PNIPAM microspheres with cystaminebisacrylamide as a crosslinker and CdTe QDs capped with a stabilizer. The CdTe QDs were bonded into PNIPAM microgels through the replacement of CdTe's stabilizer inside PNIPAM microspheres. Growth curves were generated for E. coli growing in 20 mL of LB media containing hydrogel encapsulated QD nanospheres (400 nm diameter) at relatively higher (0.5mg/mL) and lower (0.01mg/mL) concentration of solution. From the growth curves, there was no evidence at lower concentration (0.01mg/mL) that the hydrogel encapsulated QDs prevent the microbial cells from growing but at higher concentration (0.5mg/mL), microbial growth was inhibited. Transmission Electron Microscopy (TEM) was used to characterize QD size and density inside the hydrogel nanospheres. Scanning Electron Microscopy (SEM) was used to observe size and morphology of the hydrogel particles. Further investigation is going on cell growth response at different QD density and to evaluate the limiting hydrogel concentration for different QD densities.


2012 ◽  
Vol 85 ◽  
pp. 99-108 ◽  
Author(s):  
Antonios N. Psomas ◽  
George-John Nychas ◽  
Serkos A. Haroutounian ◽  
Panagiotis Skandamis

1993 ◽  
Vol 39 (8) ◽  
pp. 804-808 ◽  
Author(s):  
Lisa D. Noble ◽  
John A. Gow

Until now there has not been a satisfactory solid medium for determining the growth responses, to Na+, of marine and other bacteria that have specific growth requirements for Na+. A solid medium would be useful to investigators who would like to take advantage of the efficiency of multipoint inoculation when testing for a Na+ requirement. By using 1% gellan gum (Gel-GroTM) as the solidifying agent a medium was formulated that had a contaminating level of Na+ of slightly less than 2 mM in the basal medium. Two species of Aeromonas, which do not require Na+ for growth, and 31 species of Vibrio, which require Na+, were tested for their growth responses to Na+ on this medium. The Aeromonas strains grew well, within 24 h, at all of the Na+ concentrations tested. Approximately 75% of the Vibrio strains did not grow on the basal medium even after a prolonged incubation period. The remaining species were able to grow on the basal medium, but not without a lag period. These lag periods were as short as 36 h for two of the species and in some instances as long as 312 h. These lag periods were of sufficient duration to determine that Na+ stimulated the growth of the Vibrio strains that were able to grow on the basal medium. Approximately 75% of the strains, representing most species of Vibrio, were able to grow if as little as 25 mM Na+ was present in the medium.Key words: low-sodium medium, Na+ requirement, gellan gum, agar substitute, marine bacteria.


1984 ◽  
Vol 35 (2) ◽  
pp. 115 ◽  
Author(s):  
DJ Mares

Germinability in harvest-mature wheat grain showed a marked dependence on temperature. The optimum temperature for the complete germination of all grains ranged from 20�C for the non-dormant variety, Timgalen, to 10�C for the strongly dormant red wheat RL 4137, whereas the optimum in terms of the shortest lag period ranged from 25� to 15�C for the same varieties. Germinability gradually increased during post-harvest storage and, for after-ripened grain, the optimum temperature for both complete germination and shortest lag period were greater than 30�C. Germinability could also be increased by pre-treating imbibing grains at temperatures of 5�, 10� or in some cases 15�C. This treatment was only effective for grain at moisture contents >25% (dry weight) and the effect was not reversed by redesiccation. The pre-treatment temperature required for maximum germinability decreased with increasing levels of grain dormancy. Complete removal of dormancy required a pre-treatment period of c. 48 h; however, lesser periods gave the shortest lag period in the case of the dormant varieties. The implications of these results for the utilization of dormancy in the development of preharvest sprouting damage tolerant varieties and their subsequent use in practice are discussed.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 76
Author(s):  
Nirajan Dhakal ◽  
Sergio G. Salinas-Rodriguez ◽  
Joshua Ampah ◽  
Jan C. Schippers ◽  
Maria D. Kennedy

Measuring the bacterial growth potential of seawater reverse osmosis (SWRO) feed water is an issue that is receiving growing attention. This study developed and demonstrated the applicability of the flow-cytometry (FCM)-based bacterial growth potential (BGP) method to assess the biofouling potential in SWRO systems using natural microbial consortium. This method is relatively fast (2–3 days) compared to conventional bioassays. The effect of the potential introduction of nutrients during measurement has been studied thoroughly to achieve the lowest measure value of about 45,000 cells/mL, which is equivalent to about (10 µg-C glucose/L). The BGP method was applied in two full-scale SWRO plants that included (i) dissolved air flotation (DAF) and ultra-filtration (UF); (ii) dual-media filtration (DMF) and cartridge filter (CF), which were compared with the cleaning frequency of the plants. A significant reduction (54%) in BGP was observed through DAF–UF as pre-treatment (with 0.5 mg Fe3+/L), while there was a 40% reduction by DMF–CF (with 0.8 mg Fe3+/L). In terms of the absolute number, the SWRO feed water after DAF–UF supports 1.5 × 106 cells/mL, which is 1.25 times higher than after DMF–CF. This corresponds to the higher cleaning-in-place (CIP) frequency of SWRO with DAF–UF compared to DMF–CF as pre-treatment, indicating that the BGP method has an added value in monitoring the biofouling potential in SWRO systems.


1998 ◽  
Vol 1998 ◽  
pp. 141-141
Author(s):  
M H Davies ◽  
D W Deakin

It is important that venison competes with other red meats in efficiency and cost of production. The growth responses of farmed red deer during the first 15-18 months of life have been well defined under a wide range of feeding and daylength regimes (Davies, 1995). However there is a need to examine less intensive systems of production which aim to maximise growth from grazed grass, following various growth-restriction feeding regimes during winter. The objective of this experiment was to quantify the growth response in 16-24 month old hinds fed two contrasting feeding regimes during their second winter, followed by a period at pasture.


2011 ◽  
Vol 8 (4) ◽  
pp. 973-985 ◽  
Author(s):  
D. Lamy ◽  
C. Jeanthon ◽  
M. T. Cottrell ◽  
D. L. Kirchman ◽  
F. Van Wambeke ◽  
...  

Abstract. Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic prokaryotes able to use both light and organic substrates for energy production. They are widely distributed in coastal and oceanic environments and may contribute significantly to the carbon cycle in the upper ocean. To better understand questions regarding links between the ecology of these photoheterotrophic bacteria and the trophic status of water masses, we examined their horizontal and vertical distribution and the effects of nutrient additions on their growth along an oligotrophic gradient in the Mediterranean Sea. Concentrations of bacteriochlorophyll-a (BChl-a) and AAP bacterial abundance decreased from the western to the eastern basin of the Mediterranean Sea and were linked with concentrations of chlorophyll-a, nutrient and dissolved organic carbon. Inorganic nutrient and glucose additions to surface seawater samples along the oligotrophic gradient revealed that AAP bacteria were nitrogen- and carbon-limited in the ultraoligotrophic eastern basin. The intensity of the AAP bacterial growth response generally differed from that of the total bacterial growth response. BChl-a quota of AAP bacterial communities was significantly higher in the eastern basin than in the western basin, suggesting that reliance on phototrophy varied along the oligotrophic gradient and that nutrient and/or carbon limitation favors BChl-a synthesis.


2017 ◽  
Vol 99 ◽  
pp. 91-101 ◽  
Author(s):  
Almotasembellah Abushaban ◽  
M. Nasir Mangal ◽  
Sergio. G. Salinas-Rodriguez ◽  
Chidiebere Nnebuo ◽  
Subhanjan Mondal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document