Linking geodynamic subduction models to self-consistent 3D dynamic earthquake rupture and tsunami simulations

Author(s):  
Sara Aniko Wirp ◽  
Alice-Agnes Gabriel ◽  
Elizabeth H. Madden ◽  
Iris van Zelst ◽  
Lukas Krenz ◽  
...  

<p>3D imaging reveals striking along-trench structural variations of subduction zones world-wide (e.g., Han et al, JGR 2018). Subduction zones include basins, sediments, splay and back-thrusting faults that evolve over a large time span due to tectonic processes, and may crucially affect earthquake dynamics and tsunami genesis. Such features should be taken into account for realistic hazard assessment. Numerical modeling bridges time scales of millions of years of subduction evolution to seconds governing dynamic earthquake rupture, as well as spatial scales of hundreds of kilometers of megathrust geometry to meters of an earthquake rupture front.</p><p>Recently, an innovative framework linking long-term geodynamic subduction and seismic cycle models to dynamic rupture models of the earthquake process and seismic wave propagation at coseismic timescales was presented (van Zelst et al., JGR 2019). This workflow was extended in a simple test case to link the 2D seismic cycle model to a three-dimensional earthquake rupture mode, which was then linked to a tsunami model  (Madden et al., EarthArxiv, doi:10.31223/osf.io/rzvn2). Here, we couple a 2D seismic cycle model to 3D earthquake and tsunami models and assess the geophysical aspects of this coupling. We extract all 2D material properties, stresses and the strength of the megathrust, and its geometry, from the seismic cycling model at a time step right before a typical megathrust event to use as initial conditions for the 3D dynamic rupture models. We explore the effects of along-arc variations of megathrust curvature, sediment content, and closeness to failure of the wedge on earthquake dynamics by studying the effects on slip, rupture velocity, stress drop and seafloor deformation.</p><p>In a next step, the dynamic seafloor displacements are linked to tsunami simulations that use depth-integrated (hydrostatic) shallow water equations. This approach efficiently models wave propagations and large-scale horizontal flows. We also present novel, fully coupled 3D dynamic rupture-tsunami simulations (Krenz et al., AGU19; Abrahams et al., AGU19; Lotto and Dunham et al., 2015, Computational Geosciences) which solve simultaneously for the solid earth and ocean response, taking gravity into account via a modified free surface boundary condition.</p><p>Earthquake rupture modeling and the fully-coupled tsunami modeling utilize SeisSol (www.seissol.org), a flagship code of the ChEESE project (www.cheese-coe.eu). SeisSol is an open source software package using unstructured tetrahedral meshes that are optimally suited for the complex geometries of subduction zones. The here presented links between geodynamic subduction and seismic cycling model with earthquake dynamics and tsunami models better account for the complexity of subduction zones and help evaluate the effects of along arc heterogeneities on earthquake and tsunami behavior and advance physics-based assessments of earthquake-tsunami hazards.</p>

2021 ◽  
Author(s):  
Nadaya Cubas

<p>Over the last decade, we have accumulated evidence that, along subduction zones, a significant part of the seismic cycle deformation is permanently acquired by the medium and reflects the variation of rupture properties along the megathrust. Assuming a persistence of the megathrust segmentation over several hundred thousand years, this permanent deformation and the forearc topography could thus reveal the mechanics of the megathrust. Numerous recent studies have also shown that the megathrust effective friction appears to differ significantly between aseismic or seismic areas. From mechanical modelling, I will first discuss how such differences in effective friction are significant enough to induce wedge segments with varying morphologies and deformation patterns. I will present examples from different subduction zones characterized by either erosive or accretionary wedges, and by different seismic behaviors. Secondly, I will present how this long-lived deformation can in turn control earthquake ruptures. I will show, that along the Chilean subduction zone, all recent mega-earthquakes are surrounded by basal erosion and underplating. Therefore, the deformation and morphology of forearcs would both be partly linked to the megathrust rupture properties and should be used in a more systematic manner to improve earthquake rupture prediction.</p>


2021 ◽  
Author(s):  
Sara Aniko Wirp ◽  
Alice-Agnes Gabriel ◽  
Elizabeth H. Madden ◽  
Maximilian Schmeller ◽  
Iris van Zelst ◽  
...  

<p>Earthquake rupture dynamic models capture the variability of slip in space and time while accounting for the structural complexity which is characteristic for subduction zones. The use of a geodynamic subduction and seismic cycling (SC) model to initialize dynamic rupture (DR) ensures that initial conditions are self-consistent and reflect long-term behavior. We extend the 2D geodynamical subduction and SC model of van Zelst et al. (2019) and use it as input for realistic 3-dimensional DR megathrust earthquake models. We follow the subduction to tsunami run-up linking approach described in Madden et al. (2020), including a complex subduction setup along with their resulting tsunamis. The distinct variation of shear traction and friction coefficients with depth lead to realistic average rupture speeds and dynamic stress drop as well as efficient tsunami generation. </p><p>We here analyze a total of 14 subduction-initialized 3D dynamic rupture-tsunami scenarios. By varying the hypocentral location along arc and depth, we generate 12 distinct unilateral and bilateral earthquakes with depth-variable slip distribution and directivity, bimaterial, and geometrical effects in the dynamic slip evolutions. While depth variations of the hypocenters barely influence the tsunami behavior, lateral varying nucleation locations lead to a shift in the on-fault slip which causes time delays of the wave arrival at the coast. The fault geometry of our DR model that arises during the SC model is non-planar and includes large-scale roughness. These features (topographic highs) trigger supershear rupture propagation in up-dip or down-dip direction, depending on the hypocentral depth.</p><p>In two additional scenarios, we analyze variations in the energy budget of the DR scenarios. In the SC model, an incompressible medium is assumed (ν=0.5) which is valid only for small changes in pressure and temperature. Unlike in the DR model where the material is compressible and a different Poisson’s ratio (ν=0.25) has to be assigned. Poisson’s ratios between 0.1 and 0.4 stand for various compressible materials. To achieve a lower shear strength of all material on and off the megathrust fault and to facilitate slip, we increase the Poisson ratio in the DR model to ν=0.3 which is consistent with basaltic rocks. As a result, larger fault slip is concentrated at shallower depths and generates higher vertical seafloor displacement and earthquake moment magnitude respectively. Even though the tsunami amplitudes are much higher, the same dynamic behavior as in the twelve hypocenter-variable models can be observed. Lastly, we increase fracture energy by changing the critical slip distance in the linear slip-weakening frictional parameterization. This generates a tsunami earthquake (Kanamori, 1972) characterized by low rupture velocity (on average half the amount of s-wave speed) and low peak slip rate, but at the same time large shallow fault slip and moment magnitude. The shallow fault slip of this event causes the highest vertical seafloor uplift compared to all other simulations. This leads to the highest tsunami amplitude and inundation area while the wavefront hits the coast delayed compared to the other scenarios.</p>


Author(s):  
Percy Galvez ◽  
Anatoly Petukhin ◽  
Paul Somerville ◽  
Jean-Paul Ampuero ◽  
Ken Miyakoshi ◽  
...  

ABSTRACT Realistic dynamic rupture modeling validated by observed earthquakes is necessary for estimating parameters that are poorly resolved by seismic source inversion, such as stress drop, rupture velocity, and slip rate function. Source inversions using forward dynamic modeling are increasingly used to obtain earthquake rupture models. In this study, to generate a large number of physically self-consistent rupture models, rupture process of which is consistent with the spatiotemporal heterogeneity of stress produced by previous earthquakes on the same fault, we use multicycle simulations under the rate and state (RS) friction law. We adopt a one-way coupling from multicycle simulations to dynamic rupture simulations; the quasidynamic solver QDYN is used to nucleate the seismic events and the spectral element dynamic solver SPECFEM3D to resolve their rupture process. To simulate realistic seismicity, with a wide range of magnitudes and irregular recurrence, several realizations of 2D-correlated heterogeneous random distributions of characteristic weakening distance (Dc) in RS friction are tested. Other important parameters are the normal stress, which controls the stress drop and rupture velocity during an earthquake, and the maximum value of Dc, which controls rupture velocity but not stress drop. We perform a parametric study on a vertical planar fault and generate a set of a hundred spontaneous rupture models in a wide magnitude range (Mw 5.5–7.4). We validate the rupture models by comparison of source scaling, ground motion (GM), and surface slip properties to observations. We compare the source-scaling relations between rupture area, average slip, and seismic moment of the modeled events with empirical ones derived from source inversions. Near-fault GMs are computed from the source models. Their peak ground velocities and peak ground accelerations agree well with the ground-motion prediction equation values. We also obtain good agreement of the surface fault displacements with observed values.


2020 ◽  
Author(s):  
Thomas Ulrich ◽  
Alice-Agnes Gabriel ◽  
Elizabeth Madden

Megathrust faults host the largest earthquakes on Earth which can trigger cascading hazards such as devastating tsunamis.Determining characteristics that control subduction zone earthquake and tsunami dynamics is critical to mitigate megathrust hazards, but is impeded by structural complexity, large spatio-temporal scales, and scarce or asymmetric instrumental coverage.Here we show that tsunamigenesis and earthquake dynamics are controlled by along-arc variability in regional tectonic stresses together with depth-dependent variations in rigidity and yield strength of near-fault sediments. We aim to identify dominant regional factors controlling megathrust hazards. To this end, we demonstrate how to unify and verify the required initial conditions for geometrically complex, multi-physics earthquake-tsunami modeling from interdisciplinary geophysical observations. We present large-scale computational models of the 2004 Sumatra-Andaman earthquake and Indian Ocean tsunami that reconcile near- and far-field seismic, geodetic, geological, and tsunami observations and reveal tsunamigenic trade-offs between slip to the trench, splay faulting, and bulk yielding of the accretionary wedge.Our computational capabilities render possible the incorporation of present and emerging high-resolution observations into dynamic-rupture-tsunami models. Our findings highlight the importance of regional-scale structural heterogeneity to decipher megathrust hazards.


2020 ◽  
Vol 222 (2) ◽  
pp. 1270-1282
Author(s):  
Steven M Plescia ◽  
Gavin P Hayes

SUMMARY The role of subduction zone geometry in the nucleation and propagation of great-sized earthquake ruptures is an important topic for earthquake hazard, since knowing how big an earthquake can be on a given fault is fundamentally important. Past studies have shown subducting bathymetric features (e.g. ridges, fracture zones, seamount chains) may arrest a propagating rupture. Other studies have correlated the occurrence of great-sized earthquakes with flat megathrusts and homogenous stresses over large distances. It remains unclear, however, how subduction zone geometry and the potential for great-sized earthquakes (M 8+) are quantifiably linked—or indeed whether they can be. Here, we examine the potential role of subduction zone geometry in limiting earthquake rupture by mapping the planarity of seismogenic zones in the Slab2 subduction zone geometry database. We build from the observation that historical great-sized earthquakes have preferentially occurred where the surrounding megathrust is broadly planar, and we use this relationship to search for geometrically similar features elsewhere in subduction zones worldwide. Assuming geometry exerts a primary control on earthquake propagation and termination, we estimate the potential size distribution of large (M 7+) earthquakes and the maximum earthquake magnitude along global subduction faults based on geometrical features alone. Our results suggest that most subduction zones are capable of hosting great-sized earthquakes over much of their area. Many bathymetric features previously identified as barriers are indistinguishable from the surrounding megathrust from the perspective of slab curvature, meaning that they either do not play an important role in arresting earthquake rupture or that their influence on slab geometry at depth is not resolvable at the spatial scale of our subduction zone geometry models.


Author(s):  
G. Lykotrafitis ◽  
A. J. Rosakis

An experimental investigation was conducted to study the nature of dynamic rupture caused by shear loading, through impact, of interfaces which are held together by friction under external pressure. The dynamic stress field developed during rupture propagation was recorded in real time by a high-speed camera in conjunction with a classical dynamic photoelasticity set-up. Visual evidences of different dynamic propagating rupture modes were recorded. Unlike classical shear cracks in coherent interfaces of finite strength, rupture in frictional interfaces seems to grow without noticeable acceleration phases and at various discreet speeds. At low impact velocities a crack-like rupture mode occurs which becomes super-shear with the increase of the impact speed and a shear Mach cone emanates from the rupture point. For higher impact speeds super-shear and super-sonic Mach lines are observed formatting an unstable slip pulse which subsequently vanishes whereas evidences for extended stick and slip regions are recorded. Increasing the external applied pressure the observed features are intensified.


2021 ◽  
Author(s):  
Stefano Aretusini ◽  
Francesca Meneghini ◽  
Elena Spagnuolo ◽  
Christopher Harbord ◽  
Giulio Di Toro

<p>In subduction zones, seismic slip at shallow crustal depths can lead to the generation of tsunamis. Large slip displacements during tsunamogenic earthquakes are attributed to the low coseismic shear strength of the fluid-saturated and non-lithified clay-rich fault rocks. However, because of experimental challenges in confining these materials, the physical processes responsible of the coseismic reduction in fault shear strength are poorly understood. Using a novel experimental setup, we measured pore fluid pressure during simulated seismic slip in clay-rich materials sampled from the deep oceanic drilling of the Pāpaku thrust (Hikurangi subduction zone, New Zealand). Here we show that seismic slip is characterized by an initial decrease followed by an increase of pore pressure. The initial pore pressure decrease is indicative of dilatant behavior. The following pore pressure increase, enhanced by the low permeability of the fault, reduces the energy required to propagate earthquake rupture. We suggest that thermal and mechanical pressurisation of fluids facilitates seismic slip in the Hikurangi subduction zone, which was tsunamigenic about 70 years ago. Fluid-saturated clay-rich sediments, occurring at shallow depth in subduction zones, can promote earthquake rupture propagation and slip because of their low permeability and tendency to pressurise when sheared at seismic slip velocities.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Sara Aniko Wirp ◽  
Alice-Agnes Gabriel ◽  
Maximilian Schmeller ◽  
Elizabeth H. Madden ◽  
Iris van Zelst ◽  
...  

Physics-based dynamic rupture models capture the variability of earthquake slip in space and time and can account for the structural complexity inherent to subduction zones. Here we link tsunami generation, propagation, and coastal inundation with 3D earthquake dynamic rupture (DR) models initialized using a 2D seismo-thermo-mechanical geodynamic (SC) model simulating both subduction dynamics and seismic cycles. We analyze a total of 15 subduction-initialized 3D dynamic rupture-tsunami scenarios in which the tsunami source arises from the time-dependent co-seismic seafloor displacements with flat bathymetry and inundation on a linearly sloping beach. We first vary the location of the hypocenter to generate 12 distinct unilateral and bilateral propagating earthquake scenarios. Large-scale fault topography leads to localized up- or downdip propagating supershear rupture depending on hypocentral depth. Albeit dynamic earthquakes differ (rupture speed, peak slip-rate, fault slip, bimaterial effects), the effects of hypocentral depth (25–40 km) on tsunami dynamics are negligible. Lateral hypocenter variations lead to small effects such as delayed wave arrival of up to 100 s and differences in tsunami amplitude of up to 0.4 m at the coast. We next analyse inundation on a coastline with complex topo-bathymetry which increases tsunami wave amplitudes up to ≈1.5 m compared to a linearly sloping beach. Motivated by structural heterogeneity in subduction zones, we analyse a scenario with increased Poisson's ratio of ν = 0.3 which results in close to double the amount of shallow fault slip, ≈1.5 m higher vertical seafloor displacement, and a difference of up to ≈1.5 m in coastal tsunami amplitudes. Lastly, we model a dynamic rupture “tsunami earthquake” with low rupture velocity and low peak slip rates but twice as high tsunami potential energy. We triple fracture energy which again doubles the amount of shallow fault slip, but also causes a 2 m higher vertical seafloor uplift and the highest coastal tsunami amplitude (≈7.5 m) and inundation area compared to all other scenarios. Our mechanically consistent analysis for a generic megathrust setting can provide building blocks toward using physics-based dynamic rupture modeling in Probabilistic Tsunami Hazard Analysis.


Sign in / Sign up

Export Citation Format

Share Document