McFAN experiment: An integrated analysis of the multiphase chemistry experiment in Fogs and Aerosols in the North China Plain

Author(s):  
Hang Su ◽  
Nan Ma ◽  
Yele Sun ◽  
Jiangchuan Tao ◽  
Pingqing Fu ◽  
...  

<p>Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. The Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN) investigated the physical-chemical mechanisms leading to the haze formation with a focus on the contributions of multiphase processes in aerosol and fogs. We integrated multiple platform observations with regional and box models to identify the key oxidation process producing sulfate, nitrate and secondary organic aerosols, and their impact. A new environmental chamber was deployed to conduct kinetic experiments with real atmospheric compositions in comparison to literature kinetic data from laboratory studies. The experiments were carried out for multiple years since 2017 at the Gucheng site in the center of polluted areas and have performed experiments in the winter season. The location of the site minimizes fast transition between clean and polluted air masses (e.g., in Beijing), and helps to maintain a pollution regime representative for the North China Plain. The multi-year consecutive experiments documented the trend of PM2.5 pollution and corresponding change of aerosol physical and chemical properties, and allowed to investigate newly proposed mechanisms. The preliminary results show new proofs of the key role of aqueous phase reactions in regulating the aerosol compositions during haze events.</p><p>Reference:</p><p>Zheng et al., Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics <strong>15</strong>, 2969-2983 (2015).</p><p>Cheng et al., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances <strong>2</strong>,  (2016).</p><p>Li et al., Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH. Atmos. Meas. Tech. Discuss. <strong>2019</strong>, 1-19 (2019).</p><p>Kuang et al., Distinct diurnal variation of organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmos. Chem. Phys. Discuss. <strong>2019</strong>, 1-33 (2019).</p><p> </p>

2021 ◽  
Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Jiangchuan Tao ◽  
Ye Kuang ◽  
...  

High-RH-favored multiphase reactions can significantly change the chemical composition of fine particles and thereby modify their physicochemical properties.


Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...


2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2020 ◽  
Vol 54 (7) ◽  
pp. 3849-3860 ◽  
Author(s):  
Ye Kuang ◽  
Yao He ◽  
Wanyun Xu ◽  
Bin Yuan ◽  
Gen Zhang ◽  
...  

2018 ◽  
Vol 201 ◽  
pp. 235-246 ◽  
Author(s):  
Jianan Zou ◽  
Zirui Liu ◽  
Bo Hu ◽  
Xiaojuan Huang ◽  
Tianxue Wen ◽  
...  

2016 ◽  
Vol 8 (4) ◽  
pp. 613-633 ◽  
Author(s):  
Lijuan Zhang ◽  
Jinxia Wang ◽  
Guangsheng Zhang ◽  
Qiuqiong Huang

Purpose The purpose of this paper is: to track the methods by which farmers access groundwater for irrigation in the North China Plain (NCP); to explore whether climate factors influence farmers’ decisions on the methods of groundwater access for irrigation; and to examine whether the amount of groundwater use for irrigation and crop yield systematically differ across groups of farmers using various methods of groundwater access, and how climate factors affect them. Design/methodology/approach Descriptive statistical analysis and econometric models are used on household survey data collected over several years and county-level climate data. Findings Over the past few decades, a significant share of farmers have switched the methods of groundwater access from collective tubewells to own tubewells or groundwater markets. Farmers who bought water from groundwater markets applied less water to wheat plots than those who had their own tubewells. However, wheat yield was not negatively affected. Both average climate conditions and long-term variations were found to be related to farmers’ choice of methods of groundwater access for irrigation. More frequent droughts and increasingly volatile temperatures both increased the likelihood of farmers gaining groundwater irrigation from markets. Originality/value The analysis results suggest farmers are using groundwater markets to help them adapt to climate change. Applying empirical analysis to identify the impact of the methods by which farmers access groundwater for irrigation on the amount of groundwater use and crop yield will help policy makers design reasonable adaptation policies for the NCP.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Long-Fei Zhan ◽  
Yanjun Wang ◽  
Hemin Sun ◽  
Jianqing Zhai ◽  
Mingjin Zhan

In accordance with the China Meteorological Administration definition, this study considered a weather process with a maximum surface temperature of ≥35°C for more than three consecutive days as a heatwave event. Based on a dataset of daily maximum temperatures from meteorological stations on the North China Plain, including ordinary and national basic/reference surface stations, the intensity-area-duration method was used to analyze the spatiotemporal distribution characteristics of heatwave events on the North China Plain (1961–2017). Moreover, based on demographic data from the Statistical Yearbook and Greenhouse Gas Initiative (GGI) Population Scenario Database of the Austrian Institute for International Applied Systems Analysis (IIASA), population exposure to heatwave events was also studied. The results showed that the frequency, intensity, and area of impact of heatwave events on the North China Plain initially decreased (becoming weaker and less extensive) and then increased (becoming stronger and more extensive). Similarly, the trend of population exposure to heatwave events initially decreased and then increased, and the central position of exposure initially moved southward and then returned northward. Population exposure in the eastern Taihang Mountains was found significantly higher than in the western Taihang Mountains. In relation to the change of population exposure to heatwave events on the North China Plain, the influence of climatic factors was found dominant with an absolute contribution rate of >75%. Except for 2011–2017, increase in population also increased the exposure to heatwaves, particularly in the first half of the study period. Interaction between climatic and population factors generally had less impact on population exposure than either climatic factors or population factors alone. This study demonstrated a method for assessing the impact of heatwave events on population exposure, which could form a scientific basis for the development of government policy regarding adaption to climate change.


2012 ◽  
Vol 12 (18) ◽  
pp. 8359-8375 ◽  
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
J. Li ◽  
Y. L. Sun ◽  
...  

Abstract. Organic tracer compounds, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006) field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3) were double those in late June (926 ± 574 ng m−3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%). In contrast, isoprene SOC was the main contributor (6.6%) to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6 to −23.2‰, mean −25.0‰) were lower than those (−23.9 to −21.9‰, mean −22.9‰) in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic composition and stable carbon isotopic composition of aerosol particles in the troposphere over the North China Plain.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2020 ◽  
Vol 12 (21) ◽  
pp. 3579
Author(s):  
Min Shi ◽  
Huili Gong ◽  
Mingliang Gao ◽  
Beibei Chen ◽  
Shunkang Zhang ◽  
...  

Groundwater resources have been exploited and utilized on a large scale in the North China Plain (NCP) since the 1970s. As a result of extensive groundwater depletion, the NCP has experienced significant land subsidence, which threatens geological stability and infrastructure health and exacerbates the risks of other geohazards. In this study, we employed multi-track Synthetic Aperture Radar (SAR) datasets acquired by the Sentinel-1A (S1A) satellite to detect spatial and temporal distributions of surface deformation in the NCP from 2016 to 2018 based on multi-temporal interferometric synthetic aperture radar (MT-InSAR). The results show that the overall ground displacement ranged from −165.4 mm/yr (subsidence) to 9.9 mm/yr (uplift) with a standard variance of 28.8 mm/yr. During the InSAR monitoring period, the temporal pattern of land subsidence was dominated by a decreasing tendency and the spatial pattern of land subsidence in the coastal plain exhibited an expansion trend. Validation results show that the S1A datasets agree well with levelling data, indicating the reliability of the InSAR results. With groundwater level data, we found that the distribution of subsidence in the NCP is spatially consistent with that of deep groundwater depression cones. A comparison with land use data shows that the agricultural usage of groundwater is the dominant mechanism responsible for land subsidence in the whole study area. Through an integrated analysis of land subsidence distribution characteristics, geological data, and previous research results, we found that other triggering factors, such as active faults, precipitation recharge, urbanization, and oil/gas extraction, have also impacted land subsidence in the NCP to different degrees.


Sign in / Sign up

Export Citation Format

Share Document