Retrieving tropospheric parameters using predicted multi-GNSS orbit and clock

Author(s):  
Zhiguo Deng ◽  
Florian Zus ◽  
Kyriakos Balidakis ◽  
Wickert Jens ◽  
Harald Schuh

<p>During the last decade the stability of GNSS clocks has increased dramatically. New generation GNSS satellites are equipped with highly precise and stable clocks and the clock parameters can be predicted with even picoseconds accuracy for several hours. In this work we determined and predicted 90 days precise orbits and clocks of up to 115 satellites from GPS, GLO, GAL, BDS2/3 and QZSS. Based on the calculated and predicted orbit and clock products (SP3) we processed data from about 140 globally distributed stations using PPP in 24 hours static mode. The first 22 hours part uses the calculated satellite products and the last two hours part uses the predicted satellite products. The estimated parameters are daily station coordinates and 30 min tropospheric parameters (ZTD). To validate the last 2-hours of ZTD we generate a reference solution based on 24-hour calculated SP3 products. We also performed a statistical comparison with ECMWF weather model data which yields a root mean square deviation of about 12 mm. This initial comparison indicates that the ZTD estimated from predicted satellite orbit and clocks are sufficiently accurate for time critical meteorological applications.</p>

2020 ◽  
Author(s):  
Chen Yu ◽  
Zhenhong Li

<div>The tremendous development of InSAR missions (e.g., Sentinel-1A/1B, ALOS-2, TerraSAR-X/TanDEM-X, COSMO-SkyMED, RADARSAT-2, and Gaofen-3) in recent years facilitates the study of smaller amplitude ground deformation using longer time series and over greater spatial scales. This poses new challenges for correcting interferograms for atmospheric (tropospheric) effects especially the dominant long wavelength effect and the spatial-temporal correlated topographic related effect, resulting the atmospheric effect being distance-dependent with larger interferograms experiencing greater contamination and preventing deformation mapping of large scales deformation phenomena such as inter-seismic tectonic strain accumulation, post-seismic relaxation of fault systems and Glacial Isostatic Adjustment (GIA). </div><div> </div><div>To overcome this, we have released the Generic Atmospheric Correction Online Service (GACOS) whose notable features comprise: (i) global coverage, (ii) all-weather, all-time usability, (iii) correction maps available in near real-time, and (iv) indicators to assess the correction performance and feasibility. The model applies operational high resolution ECMWF data (0.125-degree grid, 137 vertical levels, 6-hour interval) using an iterative tropospheric decomposition model and its performance for InSAR atmospheric correction was tested using globally-distributed interferograms, encompassing both flat and mountainous topographies, mid-latitude and near-polar regions, monsoon and oceanic climate systems, achieving a phase precision and displacement accuracy of approximately 1 cm for the corrected interferograms. Indicators describing the model’s performance including (i) ECMWF cross-RMS, (ii) phase-delay correlations, (iii) ECMWF time differences, and (iv) topography variations, were developed to provide quality control for subsequent automatic processing and provide insights of the confidence level with which the generated atmospheric correction maps may be applied. </div><div> </div><div>To further improve the performance of GACOS to better serve the InSAR community, a new generation (GACOS 2.0) is being developed by: (i) improving the temporal resolution by integrating the newly published 1-hour ERA-5 weather model and the 5-minute GPS tropospheric delay estimates; (ii) developing an API system to facilitate automatic data processing; and (iii) enhancing GACOS based on regional/local datasets (such as national weather model and regional GPS network). The ERA-5 product and global GPS tropospheric delay estimates are carefully validated in order to achieve a robust integration. Based on the globally distributed GPS network and the MODIS PWV product, the performance of GACOS 2.0 in different regions of the world is evaluated with its elevation and latitude dependency being concluded which could be served as another performance indicator. All these features will contribute to a simplified time series analysis method (i.e. relying less on spatial-temporal filters) to reduce the computational burden, provided that the majority of the atmospheric error has been mitigated by GACOS 2.0. </div><div> </div>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Quang Huan Luong ◽  
Jeremy Jong ◽  
Yusuke Sugahara ◽  
Daisuke Matsuura ◽  
Yukio Takeda

A new generation electric high-speed train called Aerotrain has levitation wings and levitates under Wing-in-Ground (WIG) effect along a U-shaped guideway. The previous study found that lacking knowledge of the design makes the prototype unable to regain stability when losing control. In this paper, the nonlinear three-dimensional dynamic model of the Aerotrain based on the rigid body model has been developed to investigate the relationship between the vehicle body design and its stability. Based on the dynamic model, this paper considered an Aerotrain with a horizontal tail and a vertical tail. To evaluate the stability, the location and area of these tails were parameterized. The effects of these parameters on the longitudinal and directional stability have been investigated to show that: the horizontal tail gives its best performance if the tail area is a function of the tail location; the larger vertical tail area and (or) the farther vertical tail location will give better directional stability. As for the lateral stability, a dihedral front levitation wing design was investigated. This design did not show its effectiveness, therefore a control system is needed. The obtained results are useful for the optimization studies on Aerotrain design as well as developing experimental prototypes.


2020 ◽  
Vol 12 (10) ◽  
pp. 1-4
Author(s):  
Andrew Kirk

The clinical examination is an important part of any patient consultation. After the primary survey and taking the patient history, a more in-depth examination is sometimes required to aid making a working diagnosis and help negate other differential diagnoses. The extent of this depends on the stability of the patient and may not be possible in time-critical circumstances. However, clinical examination is an increasing part of paramedic practice owing to the continued expansion of the scope of the paramedic role in both urgent and emergency care. Education on clinical examination concerning each of the main body systems is now an integral part of undergraduate paramedic curricula. This clinical examination series provides a step-by-step overview for each of the main body systems. Continuing professional development (CPD) is an essential requirement for all clinicians to maintain and to demonstrate that they are staying up to date and advancing in their roles. This series gives an overview of each type of examination to support students, newly qualified paramedics and paramedics wishing to use these articles as a CPD development activity and an aide-memoire for clinical practice. This article, which explores the the neurological examination, gives an overview of initial examination considerations, and assessment of the upper limbs.


2020 ◽  
Vol 12 (7) ◽  
pp. 1-4
Author(s):  
Robert Deighton

The clinical examination is an important part of any patient consultation. After the primary survey and taking the patient history, a more in-depth examination is sometimes required to aid making a working diagnosis and help negate other differential diagnoses. The extent of this depends on the stability of the patient and may not be possible in time-critical circumstances. However, clinical examination is an increasing part of paramedic practice owing to the continued expansion of the scope of the paramedic role in both urgent and emergency care. Education on clinical examination concerning each of the main body systems is now an integral part of undergraduate paramedic curricula. This clinical examination series provides a step-by-step overview for each of the main body systems. Continuing professional development (CPD) is an essential requirement for all clinicians to maintain and to demonstrate that they are staying up to date and advancing in their roles. This series gives an overview of each type of examination to support students, newly qualified paramedics and paramedics wishing to use these articles as a CPD development activity and an aide-memoire for clinical practice. This article, which explores the the musculoskeletal system, gives an overview of initial examination considerations.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 360-365 ◽  
Author(s):  
G. T. Cook ◽  
E. M. Scott ◽  
E. M. Wright ◽  
Robert Anderson

We consider the suitability of commonly used Poisson counting statistics applied to background count rates measured in the new generation of low-background Packard liquid scintillation spectrometers. We also investigate the stability of these systems over long time intervals. Undetected instability will result in an underestimation of the precision of any result (i.e., the calculated error will be too small), and, in the presence of a systematic source, could lead to inaccurate results. The work described here forms only a small part of a project to investigate the statistical criteria that should be applied to the performance of such counters. The procedures to be discussed here include the Poisson index of dispersion, x and s control charts and the MSSD test for detection of drift. These are illustrated on background count rates derived from the Packard 2260XL and 2000CA/LL.


2020 ◽  
Vol 12 (4) ◽  
pp. 1-4 ◽  
Author(s):  
Jon Dearnley-Lane

The clinical examination is an important part of any patient consultation. After the primary survey and taking the patient history, a more in-depth examination is sometimes required to aid making a working diagnosis and help negate other differential diagnoses. The extent of this depends on the stability of the patient and may not be possible in time-critical circumstances. However, clinical examination is an increasing part of paramedic practice owing to the continued expansion of the scope of the paramedic role in both urgent and emergency care. Education on clinical examination concerning each of the main body systems is now an integral part of undergraduate paramedic curricula. This clinical examination series provides a step-by-step overview for each of the main body systems. Continuing professional development (CPD) is an essential requirement for all clinicians to maintain and demonstrate that they are staying up to date and advancing in their roles. This series gives an overview of each type of examination to support students, newly qualified paramedics and paramedics wishing to use these articles as a CPD development activity and an aide-memoire for clinical practice. This article, which explores the cardiovascular system, gives an overview of initial examination considerations, including first impressions.


2020 ◽  
Vol 12 (6) ◽  
pp. 1-4
Author(s):  
Robert Deighton

The clinical examination is an important part of any patient consultation. After the primary survey and taking the patient history, a more in-depth examination is sometimes required to aid making a working diagnosis and help negate other differential diagnoses. The extent of this depends on the stability of the patient and may not be possible in time-critical circumstances. However, clinical examination is an increasing part of paramedic practice owing to the continued expansion of the scope of the paramedic role in both urgent and emergency care. Education on clinical examination concerning each of the main body systems is now an integral part of undergraduate paramedic curricula. This clinical examination series provides a step-by-step overview for each of the main body systems. Continuing professional development (CPD) is an essential requirement for all clinicians to maintain and to demonstrate that they are staying up to date and advancing in their roles. This series gives an overview of each type of examination to support students, newly qualified paramedics and paramedics wishing to use these articles as a CPD development activity and an aide-memoire for clinical practice. This article, which explores the the upper musculoskeletal system, gives an overview of initial examination considerations.


1978 ◽  
Vol 12 (3) ◽  
pp. 419-453 ◽  
Author(s):  
Edward S. Haynes

One of the functions of any imperial system is to stabilize the subordinate political structures over which it exercises suzerainty. Without such a role for the central authority, control of local politics becomes impossible and, without such centralization, the stability of the entire empire is threatened. This policy has often acted to support or maintain local socio-economic relationships which, in the absence of overarching centralization, would show greater instability and flux. The precise nature of these relations can best be seen in an examination of the interregnum period between the decline of one imperial power and the imposition of a new generation of centralized stability.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Pascale Defraigne ◽  
Nicolas Guyennon ◽  
Carine Bruyninx

To compute precise point positioning (PPP) and precise time transfer using GPS code and phase measurements, a new software named Atomium was developed by the Royal Observatory of Belgium. Atomium was also adapted to perform a phase-only analysis with the goal to obtain a continuous clock solution which is independent of the GPS codes. In this paper, the analysis strategy used in Atomium is described and the clock solutions obtained through the phase-only approach are compared to the results from the PPP mode. It is shown that the phase-only solution improves the stability of the time link for averaging times smaller than 7 days and that the phase-only solution is very sensitive to the station coordinates used. The method is, however, shown to perform better than the IGS clock solution in case of changes in the GPS receiver hardware delays which affects the code measurements.


Sign in / Sign up

Export Citation Format

Share Document