Comprehensive urban environment quality assessment using remote sensing satellite data for Bhopal city, India

Author(s):  
Srashti Singh ◽  
Kamal Jain

<p><strong>KEYWORDS:</strong> Urbanisation, Remote sensing, Comprehensive environmental quality, Bhopal, India</p><p><strong>ABSTRACT</strong></p><p>A tremendous increase in the global human population has become a major threat to the environment mainly these situations are existing in developing nations. A higher population poses higher demands as well as pressure on the environment directly or indirectly, which is an issue for the sustainable development of the country. Most of the Indian cities are facing challenges in environmental sustainability. Bhopal the capital city of Madhya Pradesh, India is presently going through rapid urbanization and industrialization which leads to environmental degradation of the city. The study aims at analyzing the environmental sustainability of the city. The study is performed using satellite-based remote sensing data integrated with the census data. Initially, Landsat TM satellite data of the years 2001 and 2011 are utilized for extracting the land use land cover (LULC) transformations. Further, MODIS data products at 1 km resolution are used for estimating the biophysical indicators (BI) which are normalized difference vegetation index (NDVI) and land surface temperature (LST). A comprehensive environmental quality index (CEQI) is obtained by integrating BI with census data and transformations in CEQI are studied for the urban environment. The results depicted an increase in urban built-up with a phenomenal decay in the greenness of the city. The results from CEQI reveals significant changes in the different zones of the city which are highly affected due to change in urbanization and greenness pattern of the city. The study highlights the critical zones of the city and suggests measures to improve the environmental quality for the critical zones which can help the policy-makers in sustainable planning of the city.</p>

2018 ◽  
Vol 05 (02n03) ◽  
pp. 1850014
Author(s):  
Jasdeep Singh

The discourse on resilient cities encapsulates various analogies, which are further constructed through the work of researchers in creation of several resilience assessment methodologies and toolkits. Despite the presence of numerous resilience assessment tools, there is an apparent lack of participation of residents of the global south within the assessment and iterative transformation processes. The situation, hence, is not truly represented through application of these tools in certain socio-political climates such as of India. Consistent economic growth of India has resulted in rapid urbanization of major cities. But, this has not been supplemented with proper planning, resulting in imbalances in all spheres of city infrastructure. Delhi, capital city of India, has been one of the worst hit cities. The hot seasons have caused thousands of fatalities in the past few years. An attempt is made to review the application of current resilience tools in Delhi against the backdrop of the sustainable development goals. In an attempt to improve the approach of these existing tools, an initial iteration is conducted, hinging on qualitative data obtained through surveying a sample population of the city and accessible quantitative metric data. Possible intervention scenarios are further suggested in view of aforementioned stressors and resilience scores. Research question: Where are the current resilience tools found lacking in the case of the global south, specifically in Delhi? How can the applicability of these tools be improved without compromising the deliverables yet ensuring an all-inclusive approach? Key findings: (1) The city is found lacking in adequate infrastructure facilities to its residents especially within the ambits of basic water and sanitation provision and healthcare services. (2) The city is relatively unprepared to face unforeseen events, both at the administrative and the grassroots levels. The lack of knowledge transfer and cooperation are largely evident.


2015 ◽  
Vol 40 (1) ◽  
pp. 33-42
Author(s):  
Çılga Resuloğlu ◽  
Elvan Altan Ergut

This paper aims to examine the formation of Kavaklıdere as a ‘modern’ residential district during the 1950s. Contemporary urbanization brought about changes in various regions of Ankara, among which Kavaklıdere emerged as an important location with features that defined a new stage in the development of the identity of the capital city. The construction of houses in this district from the early 1950s onwards was in accordance with new functional requirements resulting from the needs of the contemporary socio-economic context, and exemplified the relationship between architectural approaches and social developments. In line with the rapid urbanization of Ankara throughout the 1950s, daily life in Kavaklıdere was transformed, as experienced in the apartment blocks that were the newly constructed sites of modernization. The contemporary transformation of Kavaklıdere was apparently formal and spatial, with the modernist architectural approach of the period, i.e. the so-called International Style, beginning to dominate in the shaping of its changing character. Nonetheless, the transformation was not only architectural but also social: the characteristics of this part of the city were then defined by structures like these apartment blocks, which brought modernist design features, together with modern ways of living, into wider public use and appreciation. The paper discusses how the identity of Kavaklıdere as a residential district was formed in the context of the mid-twentieth century, when these new residences emerged as pioneering modernist architectural housing, the product of social change, which housed and hence facilitated the ‘modern’ lifestyle of that time.


2020 ◽  
Vol 12 (21) ◽  
pp. 3662
Author(s):  
Vineet Chaturvedi ◽  
Monika Kuffer ◽  
Divyani Kohli

A large part of the population in low-income countries (LICs) lives in fragile and conflict-affected states. Many cities in these states show high growth dynamics, but little is known about the relation of conflicts and urban growth. In Afghanistan, the Taliban regime, which lasted from 1996 to 2001, caused large scale displacement of the population. People from Afghanistan migrated to neighboring countries like Iran and Pakistan, and all developments came to a halt. After the US invasion in October 2001, all the major cities in Afghanistan experienced significant population growth, in particular, driven by the influx of internally displaced persons. Maximum pressure of this influx was felt by the capital city, Kabul. This rapid urbanization, combined with very limited capacity of local authorities to deal with this growth, led to unplanned urbanization and challenges for urban planning and management. This study analyses the patterns of growth between 2001 and 2017, and the factors influencing the growth in the city of Kabul with the help of high-resolution Earth Observation-based data (EO) and spatial logistic regression modelling. We analyze settlement patterns by extracting image features from high-resolution images (aerial photographs of 2017) and terrain features as input to a random forest classifier. The urban growth is analyzed using an available built-up map (extracted from IKONOS images for the year 2001). Results indicate that unplanned settlements have grown 4.5 times during this period, whereas planned settlements have grown only 1.25 times. The unplanned settlements expanded mostly towards the west and north west parts of the city, and the growth of planned settlements happened mainly in the central and eastern parts of the city. Population density and the locations of military bases are the most important factors that influence the growth, of both planned and unplanned settlements. The growth of unplanned settlement occurs predominantly in areas of steeper slopes on the hillside, while planned settlements are on gentle slopes and closer to the institutional areas (central and eastern parts of the city). We conclude that security and availability of infrastructure were the main drivers of growth for planned settlements, whereas unplanned growth, mainly on hillsides, was driven by the availability of land with poor infrastructure.


Author(s):  
Qigan Shao ◽  
Sung-Shun Weng ◽  
James J.H. Liou ◽  
Huai-Wei Lo ◽  
Hongbo Jiang

In China, with the acceleration of urbanization, people pay more attention to the quality of urban environment. Air pollution, vegetation destruction, water waste and pollution, and waste sorting have restricted the sustainable development of urban environment. It is important to evaluate the impact of these environmental concerns as a prerequisite to implement an effective urban environmental sustainability policy. The aim of this paper is to establish a system for evaluating sustainable urban environmental quality in China. We extracted six dimensions and 29 criteria for assessing urban sustainable environment. Then, a fuzzy technique and the best worst method were applied to obtain the weights for the dimensions and criteria. Next, grey possibility values were applied to evaluate the sustainable environmental quality of five cities: Beijing, Shanghai, Shenzhen, Guangzhou, and Hangzhou in China. A sensitivity analysis was performed to identify how the ranking of these five cities changed when varying the weights of each criterion. The results show that pollution control, the natural environment, and water management are the three most important dimensions for urban environmental quality evaluation. We suggest that controlling pollutant emissions, strengthening food waste management, improving clean production processes, and utilizing heat energy are the effective measures to improve the urban environment and achieve sustainable urban environmental development.


2021 ◽  
Author(s):  
Kamil Faisal ◽  
Ahmed Shaker

Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice.


2021 ◽  
Vol 13 (17) ◽  
pp. 3472
Author(s):  
Yuming Wei ◽  
Xiaojie Liu ◽  
Chaoying Zhao ◽  
Roberto Tomás ◽  
Zhuo Jiang

Lanzhou is one of the cities with the higher number of civil engineering projects for mountain excavation and city construction (MECC) on the China’s Loess Plateau. As a result, the city is suffering from severe surface displacement, which is posing an increasing threat to the safety of the buildings. However, up to date, there is no comprehensive and high-precision displacement map to characterize the spatiotemporal surface displacement patterns in the city of Lanzhou. In this study, satellite-based observations, including optical remote sensing and synthetic aperture radar (SAR) sensing, were jointly used to characterize the landscape and topography changes in Lanzhou between 1997 and 2020 and investigate the spatiotemporal patterns of the surface displacement associated with the large-scale MECC projects from 2015 December to March 2021. First, we retrieved the landscape changes in Lanzhou during the last 23 years using multi-temporal optical remote sensing images. Results illustrate that the landscape in local areas of Lanzhou has been dramatically changed as a result of the large-scale MECC projects and rapid urbanization. Then, we optimized the ordinary time series InSAR processing procedure by a “dynamic estimation of digital elevation model (DEM) errors” step added before displacement inversion to avoid the false displacement signals caused by DEM errors. The DEM errors and the high-precision surface displacement maps between December 2015 and March 2021 were calculated with 124 ascending and 122 descending Sentinel-1 SAR images. By combining estimated DEM errors and optical images, we detected and mapped historical MECC areas in the study area since 2000, retrieved the excavated and filling areas of the MECC projects, and evaluated their areas and volumes as well as the thickness of the filling loess. Results demonstrated that the area and volume of the excavated regions were basically equal to that of the filling regions, and the maximum thickness of the filling loess was greater than 90 m. Significant non-uniform surface displacements were observed in the filling regions of the MECC projects, with the maximum cumulative displacement lower than −40 cm. 2D displacement results revealed that surface displacement associated with the MECC project was dominated by settlements. From the correlation analysis between the displacement and the filling thickness, we found that the displacement magnitude was positively correlated with the thickness of the filling loess. This finding indicated that the compaction and consolidation process of the filling loess largely dominated the surface displacement. Our findings are of paramount importance for the urban planning and construction on the Loess Plateau region in which large-scale MECC projects are being developed.


2021 ◽  
Vol 977 (11) ◽  
pp. 40-50
Author(s):  
I.D. Akhmedova ◽  
L.D. Sulkarnaeva ◽  
N.V. Zherebyatieva ◽  
A.V. Petukhova

The authors present the results of mapping the “heat island” surface in the city of Tyumen and determining its spatial and seasonal manifestations using the Landsat-8 satellite data. Geothermic scenes of four seasons were obtained and analyzed


2021 ◽  
Author(s):  
Kamil Faisal ◽  
Ahmed Shaker

Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice.


2021 ◽  
Vol 13 (21) ◽  
pp. 4440
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Jianxin Yang

Rapid urbanization significantly affects the productivity of the terrestrial ecosystem and the foundation of regional ecosystem services, thereby detrimentally influencing the ecological environment and urban ecological security. The United Nations’ Sustainable Development Goals (SDGs) also require accurate and timely assessments of where people live in order to develop, implement and monitor sustainable development policies. Sustainable development also emphasizes the process of protecting the ecological environment for future generations while maintaining the current needs of mankind. We propose a comprehensive evaluation method for urban ecological quality (UEQ) using Landsat TM/ETM+/OLI/TIRS images to extract remote sensing information representing four ecological elements, namely humidity, greenness, heat and dryness. An improved comprehensive remote sensing ecological index (IRSEI) evaluation model is constructed by combining the entropy weight method and principal component analysis. This modeling is applied to the city of Wuhan, China, from 1995 to 2020. Spatial autocorrelation analysis was conducted on the geographic clusters of the IRSEI. The results show that (1) from 1995 to 2015, the mean IRSEI of Wuhan city decreased from 0.60 to 0.47, indicating that environmental deterioration overwhelmed improvements; (2) the global Moran’s I for IRSEI ranged from 0.535 to 0.592 from 1995 to 2020, indicating significant heterogeneity in its spatial distribution, highlighting that high and low clusters gradually developed at the edge of the city and at the city center, respectively; (3) the high clusters are mainly distributed in the Huangpi and Jiangxia districts, and the low clusters at the city center, which exhibits a dense population and intense human activity. This paper uses remote sensing index methods to evaluate UEQ as a scientific theoretical basis for the improvement of UEQ, the control of UEQ and the formulation of urban sustainable development strategies in the future. Our results show that the UEQ method is a low-cost, feasible and simple technique that can be used for territorial spatial control and spatiotemporal urban sustainable development.


Sign in / Sign up

Export Citation Format

Share Document