scholarly journals Modelling glaciers bed overdeepenings and possible future lakes in deglaciating landscapes of the French Alps

Author(s):  
Maeva Cathala ◽  
Florence Magnin ◽  
Andreas Linsbauer ◽  
Wilfried Haeberli ◽  
Ludovic Ravanel ◽  
...  

<p>Alpine glacier retreat due to global warming generates major landscape changes in high mountain environments. New lakes can potentially form in Glaciers Bed Overdeepenings (GBOs). Those new water bodies, sometimes located near potentially instable slopes or behind unstable moraine dams, can increase outburst flood hazards, generating risks for valley floors. Such GLOF events (Glacial Lake Outbrust Floods) can result from displacement waves triggered by rock fall into lakes and/or sudden dam breaching. Those events can travel far down to low altitude areas and turning into high magnitude debris flows. Beyond the threats, those lakes can also represent opportunities for tourism, hydropower production or fresh water supply.</p><p> </p><p>Anticipating location and formation of potential future lakes is thus essential for risk mitigation and seizing the opportunities. In the French Alps so far, potential future lakes have only been investigated in the Mont Blanc massif, while several other glaciated high mountain ranges may also yield water bodies in the near future. This study aims to identify and characterize the location of potential future lakes for each mountain massif of the French Alps (mainly the Mont Blanc, Grandes Rousses, Vanoise and Écrins massifs).</p><p> </p><p>To do so, we first ran GlabTop model, a GIS scheme calculating ice thickness from surface slope via basal shear stress, to map potential GBOs. We also ran GlabTOP 2, which is based on the same concept but is fully automated. In this study, we compared the results between GlabTop and GlabTop 2. We then estimated the level of confidence of the predicted GBOs using morphometric analysis (slope angle at GBOs and downstream, presence/absence of crevasse fields, presence/absence of bedrock threshold) and classification of lakes according to their susceptibility of formation.</p><p> </p><p>GlabTOP output thus revealed 89 GBOs (>1ha) which can potentially be sites for future lakes. 20 lakes are predicted in Écrins, 2 in Grandes Rousses, 39 in Vanoise and 30 on the French side of the Mont Blanc massif. The lakes with the highest surfaces/thicknesses are situated in the latter. Among the 89 predicted water bodies, 41 are highly susceptible to be formed. Some can already be observed in GBOs in recently deglaciated areas like at the Bionnassay and Tré la Tête glaciers (Mont Blanc massif).</p><p> </p><p>This communication will present the approach, the detailed results and possible implications for landscape management at the French Alps scale.</p>

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1176
Author(s):  
Massimiliano Fazzini ◽  
Marco Cordeschi ◽  
Cristiano Carabella ◽  
Giorgio Paglia ◽  
Gianluca Esposito ◽  
...  

Mass movements processes (i.e., landslides and snow avalanches) play an important role in landscape evolution and largely affect high mountain environments worldwide and in Italy. The increase in temperatures, the irregularity of intense weather events, and several heavy snowfall events increased mass movements’ occurrence, especially in mountain regions with a high impact on settlements, infrastructures, and well-developed tourist facilities. In detail, the Prati di Tivo area, located on the northern slope of the Gran Sasso Massif (Central Italy), has been widely affected by mass movement phenomena. Following some recent damaging snow avalanches, a risk mitigation protocol has been activated to develop mitigation activities and land use policies. The main goal was to perform a multidisciplinary analysis of detailed climatic and geomorphological analysis, integrated with Geographic Information System (GIS) processing, to advance snow avalanche hazard assessment methodologies in mass movement-prone areas. Furthermore, this work could represent an operative tool for any geomorphological hazard studies in high mountainous environments, readily available to interested stakeholders. It could also provide a scientific basis for implementing sustainable territorial planning, emergency management, and loss-reduction measures.


2020 ◽  
Vol 67 (4) ◽  
pp. 286 ◽  
Author(s):  
Iwona Jasser ◽  
Iwona Kostrzewska-Szlakowska ◽  
Jan Kwiatowski ◽  
Dovutsho Navruzshoev ◽  
Małgorzata Suska-Malawska ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Grégoire Guillet ◽  
Susanne Preunkert ◽  
Ludovic Ravanel ◽  
Maurine Montagnat ◽  
Ronny Friedrich

Abstract The current paper studies the dynamics and age of the Triangle du Tacul (TDT) ice apron, a massive ice volume lying on a steep high-mountain rock wall in the French side of the Mont-Blanc massif at an altitude close to 3640 m a.s.l. Three 60 cm long ice cores were drilled to bedrock (i.e. the rock wall) in 2018 and 2019 at the TDT ice apron. Texture (microstructure and lattice-preferred orientation, LPO) analyses were performed on one core. The two remaining cores were used for radiocarbon dating of the particulate organic carbon fraction (three samples in total). Microstructure and LPO do not substantially vary with along the axis of the ice core. Throughout the core, irregularly shaped grains, associated with strain-induced grain boundary migration and strong single maximum LPO, were observed. Measurements indicate that at the TDT ice deforms under a low strain-rate simple shear regime, with a shear plane parallel to the surface slope of the ice apron. Dynamic recrystallization stands out as the major mechanism for grain growth. Micro-radiocarbon dating indicates that the TDT ice becomes older with depth perpendicular to the ice surface. We observed ice ages older than 600 year BP and at the base of the lowest 30 cm older than 3000 years.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2021 ◽  
Author(s):  
Sandra Gorsic ◽  
Alberto Muñoz-Torrero Manchado ◽  
Jérôme Lopez-Saez ◽  
Simon K. Allen ◽  
Juan A. Ballesteros-Canovas ◽  
...  

<p>With the substantial glacier mass reduction projected by the end of the century, the formation and rise of periglacial lakes has to be expected. Even though these changes often occur in remote areas, they can nevertheless have catastrophic impacts on populations and infrastructure through processes such as glacial lake outburst floods (GLOF). GLOFs are the result of complex geomorphic changes and subject to various timescales, thus urging the need for a multidimensional approach. The present study combines two approaches to analyze natural hazards in the secluded San Rafael National Park in Chilean Patagonia (North Patagonian Icefield). The Grosse glacier outlet was chosen after interpreting satellite imagery and historical pictures showing a historical emptying of a lateral lake, which was also supported by local testimonies. Dendrogeomorphology was primarily used with an automatic detection approach to identify possible dates of occurrence of past GLOFs at the Grosse outlet. A total of 105 disturbed Nothofagus trees were sampled highlighting 6 event years between 1958 and 2011. The second method aimed at complementing the tree-ring-based findings with UAV imagery acquired during fieldwork and the mapping of geomorphic evidence of past GLOFs. Huge boulders and deposits are one of the signs recognized as remnants of past lake outbursts and were thus used to differentiate small, rainfall-induced floods from high magnitude events. More precisely, through an object-based strategy, we mapped deposits and extrapolated a theoretical flow orientation. Whereas the first method allowed to select dates of potential events, the second facilitated identification and mapping of the spatial extent of past high-energy events. Analysis of imagery also allowed detection of the occurrence of a 200-m wide breach in the frontal moraine as well as the vanishing of a lateral lake estimated to be 1.8 × 10<sup>6 </sup>m<sup>2</sup> in the 1950s, which we date to 1958 using tree-ring records. When used together the two approaches can represent a valuable contribution to historical records and help future assessments of natural hazard at Grosse glacier, but also in other high-mountain environments.</p>


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Jacqueline Eng ◽  
Mark Aldenderfer

Anthropological research in the high-elevation regions of northwestern Nepal offers insights into the populationhistory of the Himalayan arc through a multi- and interdisciplinary approach that includes not only archaeologicaldata and historic and ethnographic accounts but also genomic, isotopic, and bioarchaeologicaldata, as well as innovative use of thermal niche modeling for paleoclimate reconstruction. Together these linesof evidence have allowed us to address project questions about human settlement into the region, including(1) sources of population movements into high-elevation environments of the Himalayan arc and (2) bioculturaladaptations to high-mountain environments. In this paper we compare research at several communalmortuary sites, each with a rich assemblage of material culture and human burials: Mebrak (400 B.C.–A.D. 50),Kyang (400–175 B.C.), and Samdzong (A.D. 450–650), as well as intriguing insights from finds in the earlier (ca.1250–450 B.C.) sites of Lubrak, Chokhopani, and Rhirhi. Our genomic findings demonstrate population originsfrom the Tibetan plateau, despite South Asian material culture recovered in early sites. Bioarchaeological findingsof low frequencies of non-specific stress and trauma indicate successful biocultural adaptation to highaltitudeconditions of hypoxia, cold, and low resource availability, potentially through buffering from exchangenetworks and local cultural practices, alongside high-altitude selected alleles. An integrative, multidisciplinaryapproach thus offers significantly greater opportunities for developing a more nuanced understanding of thepast processes of migration, settlement, and biocultural adaptation in the region. La investigación antropológica de las alturas del noroeste de Nepal nos proporciona conocimientos de la historiade la población del arco Himalaya a través de un enfoque multidisciplinario e interdisciplinario que incluyeno solamente datos arqueológicos y relatos históricos y etnográficos, sino también datos genómicos, isotópicos,y bioarqueológicos, tanto como uso innovador del modelado del nicho térmico para la reconstrucción paleoclimática.En conjunto, estas líneas de evidencia nos han permitido abordar temas sobre el asentamiento humanade la región, como: (1) los orígenes del movimiento hacia ambientes en las alturas del arco del Himalaya;y (2) las adaptaciones bioculturales necesarias para vivir en las alturas. En este artículo comparamos las investigacionesde varios mortuorios comunales que ofrecen conjuntos abundantes de entierros humanos y artefactosrelacionados: Mebrak (400 a.C.–d.C. 50), Kyang (400–175 a.C.), and Samdzong (d.C. 450–650), así como loshallazgos intrigantes de sitios anteriores (ca. 1250–450 a.C.) de Lubrak, Chokhopani, y Rhirhi. Nuestros datosgenómicos sugieren orígenes de le población del altiplano tibetano, a pesar del material que deriva del sur de Asia que se ha recuperado de los sitios mas tempranos. Los hallazgos bioarqueológicos demuestran niveles bajosde estrés y trauma inespecífico, y sugieren éxito en adaptación biocultural, a pesar de las condiciones de hipoxia,frio, y los recursos escasos en este ambiente. Es posible que alelos seleccionados a las alturas, junto con sistemasde intercambio y las costumbres locales contribuyeron al éxito de la adaptación. Por lo tanto, un enfoque multidisciplinarioque integra todas las evidencias ofrece una comprensión mas detallada de los procesos de migración,asentamiento, y adaptación biocultural de la región.


2020 ◽  
pp. 034
Author(s):  
Ludovic Ravanel ◽  
Florence Magnin ◽  
Xavi Gallach ◽  
Philip Deline

Avec le réchauffement du climat, la dégradation du permafrost est à l'origine d'une intensification des processus géomorphologiques sur les versants de haute montagne. Dans les parois rocheuses, les écroulements se multiplient et leur volume augmente, posant des problèmes de sécurité non seulement à haute altitude (infrastructures, alpinistes), mais également pour les fonds de vallée. Cet article présente les travaux récemment menés dans le massif du Mont-Blanc sur la relation entre climat et écroulements à différentes échelles de temps, les effets des épisodes caniculaires et la répartition et l'évolution du permafrost de paroi. Under global warming, permafrost degradation tends to intensify geomorphological processes on high mountain slopes. In the perennially frozen rock walls, the number and volume of rockfalls is increasing, causing safety problems not only at high altitude (infrastructure, mountaineers) but also for the valleys. This article summarizes recent work carried out in the Mont-Blanc massif on the climate-rockfall relationship at different time scales, the effects of heat waves, and the distribution/evolution of rock wall permafrost.


Author(s):  
M. Rutzinger ◽  
M. Bremer ◽  
B. Höfle ◽  
M. Hämmerle ◽  
R. Lindenbergh ◽  
...  

The 2nd international summer school “Close-range sensing techniques in Alpine terrain” was held in July 2017 in Obergurgl, Austria. Participants were trained in selected close-range sensing methods, such as photogrammetry, laser scanning and thermography. The program included keynotes, lectures and hands-on assignments combining field project planning, data acquisition, processing, quality assessment and interpretation. Close-range sensing was applied for different research questions of environmental monitoring in high mountain environments, such as geomorphologic process quantification, natural hazard management and vegetation mapping. The participants completed an online questionnaire evaluating the summer school, its content and organisation, which helps to improve future summer schools.


2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


Author(s):  
Yangji Doma Sherpa ◽  
A. John Sinclair ◽  
Thomas Henley

The Himalayan region of India is experiencing rapid development in tourism, agriculture, highway construction and hydroelectric dam construction. This research considered the role of the public both within and outside of development decision-making processes in these high mountain environments using the proposed Himalayan Ski Village (HSV) in Manali as a case study. The qualitative data revealed that there has been an extensive array of public participation activity related to the HSV project over approximately 10 years. Very little of this activity has evolved, however, through the formal decision-making process. Rather, most participation activities, such as general house meetings, objection letters, public rallies, court cases against the proposed project, and a religious congregation were instigated by the public to protest the proposed development. The findings also show that involvement in the participatory activities undertaken by the public and project proponent fostered instrumental and communicative learning outcomes.


Sign in / Sign up

Export Citation Format

Share Document