Run4Life project: A step forward in NPK recovery from source-separated wastewaters.

Author(s):  
Gemma Torres Sallan ◽  
Eduard Borras ◽  
Martí Aliaguilla ◽  
Daniele Molognoni ◽  
Sonia Sanchis ◽  
...  

<p>Domestic wastewater (WW) is an important carrier of nutrients usually wasted away by current centralised sewage treatment plants. The Run4Life project proposes an alternative strategy for increasing circularity of WW treatment systems and improving nutrient recovery rates and material qualities. This is based on a decentralised treatment of segregated black water (BW), kitchen waste and grey water combining existing and innovative technologies.</p><p>Run4Life is currently improving innovative nutrient recovery technologies, these being: (i) an ultra-low flush vacuum toilet, which uses around 0.5L/flush, thus less water than conventional vacuum toilets, allowing concentration of BW compared to conventional toilets and vacuum toilets. (ii) Bio-electrochemical systems for nitrogen recovery, which recovers up to 12.8 g/m<sup>2</sup>*d of Nitrogen present in blackwater as liquid fertilizer (ammonium nitrate) iii) (Hyper-)thermophilic anaerobic digestion, which aims to recover the phosphorous and nitrogen in the hygienised effluent in a one-step treatment and ready for use as fertilisers.  </p><p>Nutrient recycling technologies from domestic WW are demonstrated at large scale in four demonstration sites where decentralised WW treatment systems are implemented: Ghent (Belgium, 430 houses), Helsingborg (Sweden, 320 apartments), Sneek (The Netherlands, 32 houses), and Vigo (Spain, 1 office building). This will result in solid and liquid NPK fertilizers being recovered in the form of struvite, ammonium nitrate, calcium phosphate, organic fertilizers and reclaimed water.</p><p>The environmental, economic and societal impact of the obtained fertilizers is being tested by means of ecotoxicology tests, pot experiments, field trials, and by a selection of key performance indicators based on European, national and regional legislation present in the four different countries. Life cycle assessments are being performed for each technology and demonstration site, and active measures such as knowledge brokerage activities are being developed as an engagement strategy to advocate the institutional, legal and social acceptance of the Run4Life nutrient recovery technologies and fertilizers produced.  In addition, new business models which can benefit from the Run4Life project are currently being assessed.</p><p>It is expected that, by the end of the project, more than 90% of the water will be reused, and that nutrient recovery rates will achieve 100%.</p>

1990 ◽  
Vol 22 (3-4) ◽  
pp. 291-298
Author(s):  
Frits A. Fastenau ◽  
Jaap H. J. M. van der Graaf ◽  
Gerard Martijnse

More than 95 % of the total housing stock in the Netherlands is connected to central sewerage systems and in most cases the wastewater is treated biologically. As connection to central sewerage systems has reached its economic limits, interest in on-site treatment of the domestic wastewater of the remaining premises is increasing. A large scale research programme into on-site wastewater treatment up to population equivalents of 200 persons has therefore been initiated by the Dutch Ministry of Housing, Physical Planning and Environment. Intensive field-research work did establish that the technological features of most on-site biological treatment systems were satisfactory. A large scale implementation of these systems is however obstructed in different extents by problems of an organisational, financial and/or juridical nature and management difficulties. At present research is carried out to identify these bottlenecks and to analyse possible solutions. Some preliminary results are given which involve the following ‘bottlenecks':-legislation: absence of co-ordination and absence of a definition of ‘surface water';-absence of subsidies;-ownership: divisions in task-setting of Municipalities and Waterboards; divisions involved with cost-sharing;-inspection; operational control and maintenance; organisation of management;-discharge permits;-pollution levy;-sludge disposal. Final decisions and practical elaboration of policies towards on-site treatment will have to be formulated in a broad discussion with all the authorities and interest groups involved.


1994 ◽  
Vol 29 (12) ◽  
pp. 279-282 ◽  
Author(s):  
C. Güldner ◽  
W. Hegemann ◽  
N. Peschen ◽  
K. Sölter

The integration of the chemical precipitation unit which would inject a lime solution into a series of mechanical-biological processes, including nitrification/denitrification, and the sludge treatment are the subject of this project. The essential target is the large-scale reconstruction of a mechanical-biological sewage treatment plant with insufficient cleaning performance in the new German states and the adjustment of the precipitation stage to the unsteady inflow of sewage. First results indicate that the pre-treatment performance could be improved by ≅ 20% and the discharge of concentrations of COD, BOD, N and P could be reduced and homogenized. In addition, experiments on hydrolysis and acidifiability of the pre-treatment sludge have been carried out on a laboratory level with the object of making sources of carbon readily available for denitrification. In the course of the experiment, inhibition of fatty acid production by calcareous primary sludge could not be detected. The characteristics of the sludge, such as draining and thickening were considerably improved by the adding of lime.


2016 ◽  
Vol 100 ◽  
pp. 496-507 ◽  
Author(s):  
Di Wu ◽  
George A. Ekama ◽  
Ho-Kwong Chui ◽  
Bo Wang ◽  
Yan-Xiang Cui ◽  
...  

2017 ◽  
Vol 10 (5) ◽  
pp. 143
Author(s):  
Tongyuan Wang

This article proposes a systematic engineering for sustainable economic and ecologic development. This system is deemed to be applicable in any country of the world. The system aims to realize five important objectives: water source clearance, energy saving and emission reduction, renewable energy and organic fertilizer production, and ecological agriculture development, all in large scale and at low cost. The main conception of the new system to reach these goals is the replacement of the conventional sewage treatment approach with more efficient and more ecological process – the natural fermentation of the mixture of the urban sewage and agrarian wastes, such that water body clearance, including water de-eutrophication, green algae prevention and siltation dredging will all be accomplished at virtually a zero cost. Along with this process, the system can produce a vast amount of renewable energy and organic fertilizers, consequently ecological agriculture development in large scale can be realized. As a result, this system will greatly reduce the use of chemical fertilizers thus largely reduce the consumption of fossil energy and the related polluting emissions. This system is thus fully a circular economy model through full west-reuse processes, which ultimately will enhance our life quality with healthier food and living environment. The system is flexible and adaptable to be implemented in either small towns or megacities. The implementation and operation of this system will also benefits employment growth. Lastly, in terms of economic feasibility and profitability, millions to billions of dollars of annual revenue can be generated from the running of this system in a country.


2018 ◽  
Vol 33 (6) ◽  
pp. 749-767 ◽  
Author(s):  
Seppo Leminen ◽  
Mervi Rajahonka ◽  
Mika Westerlund ◽  
Robert Wendelin

Purpose This study aims to understand their emergence and types of business models in the Internet of Things (IoT) ecosystems. Design/methodology/approach The paper builds upon a systematic literature review of IoT ecosystems and business models to construct a conceptual framework on IoT business models, and uses qualitative research methods to analyze seven industry cases. Findings The study identifies four types of IoT business models: value chain efficiency, industry collaboration, horizontal market and platform. Moreover, it discusses three evolutionary paths of new business model emergence: opening up the ecosystem for industry collaboration, replicating the solution in multiple services and return to closed ecosystem as technology matures. Research limitations/implications Identifying business models in rapidly evolving fields such as the IoT based on a small number of case studies may result in biased findings compared to large-scale surveys and globally distributed samples. However, it provides more thorough interpretations. Practical implications The study provides a framework for analyzing the types and emergence of IoT business models, and forwards the concept of “value design” as an ecosystem business model. Originality/value This paper identifies four archetypical IoT business models based on a novel framework that is independent of any specific industry, and argues that IoT business models follow an evolutionary path from closed to open, and reversely to closed ecosystems, and the value created in the networks of organizations and things will be shareable value rather than exchange value.


2021 ◽  
pp. 20-24
Author(s):  
Artem Vladimirovich Ermilov ◽  
Roman Aleksandrovich Kamenev ◽  
Anatoly Petrovich Solodovnikov ◽  
Vladimir Nikolaevich Maksimchuk

The article presents an analysis of the determination of the effectiveness of mineral and organic fertilizers on the yield of winter wheat grain. The studies were carried out in 2017–2020 in the Rostov region on the southern chernozem. The object of research was the Doneko winter wheat variety. The predecessor is corn for grain. Ammonium nitrate, ANP fertilizer (16-16-16) and urea were used as mineral fertilizers, which were applied in the fertilization system of winter wheat and acted as a background option in the experimental scheme. ANP fertilizer (16-16-16) was introduced when sowing winter wheat, ammonium nitrate - scattered over thawed-frozen soil and carbamide in the heading phase by foliar method. Organomineral fertilizers were represented by the following types: Ruther, Leili 2000, Siamino Pro, Gumiful Pro, Soft Guard and Double Wine MKR (monocaliphosphate) produced by Biokepharm (Switzerland). The raw material for the production of organomineral fertilizers was the algae of the warm seas Laminaria. In the field experiment, the options for the joint application of foliar application and pre-sowing seed treatment with organomineral fertilizers were also studied. The control was the option without mineral fertilizers and the option with the background of the use of mineral fertilizers (farm fertilization system). It was found out that the use of organic fertilizers Ruter (0.5 or 0.25 l / t) and Leyli (0.25 l / t) for seed treatment before sowing, the use of Soft Guard (0.2 l / ha) and Gumiful Pro ( 0.2 l / ha) in the spring tillering phase and in the flag leaf phase against the background of sowing nitroammophoska at a dose of N32P32K32, random fertilizing on thawed-frozen soil with ammonium nitrate at a dose of N40 and the use of carbamide in the heading phase at a dose of N20 increased grain yield on average for 2018–2020 compared with the control (fertilization system of the farm) by 0.73 t / ha, or 23.0%. The maximum yield increase from the root-forming agent Ruther, used for pre-sowing seed treatment, reached 0.36 t / g, or 11.3%.  


2020 ◽  
Author(s):  
Ramon Leon ◽  
Maria Camila Ochoa ◽  
Alejandro Gutierrez

The origins of the electric industry can be traced back to the invention of the battery. However, Energy Storage Systems (ESS) have never been considered as a part of the electricity supply chain. Even though there has been an increase of government mandated storage investments in power grids, market driven investments are still lacking sustainable business models. Now, with the possibility that cost reductions of the technology make it viable for widespread utilization, multiple efforts have been devoted by the academia and industry to design its incorporation into electricity markets. A large majority of the proposals have been devoted to develop mechanisms for their incorporation in ancillary services markets or for arbitrage, considering storage as another market player, both still with little success in providing sustainable benefits to energy consumers and investors alike. In this paper, we demonstrate that Large Scale Energy Storage excels when incorporated as a service provider in electricity markets. Our proposal considers ESS as a grid resource, available to the ISO to achieve the optimal mix of resources in the day ahead dispatch. We demonstrate that in the Colombian system, a large ESS used in this manner may achieve high benefit-cost ratios. The results also indicate that current market designs need to evolve in order to take better advantage of energy storage and renewable energy resources.


Sign in / Sign up

Export Citation Format

Share Document