DefVolc: Interface and web service for fast computation of volcano displacement

Author(s):  
Valerie Cayol ◽  
Farshid Dabaghi ◽  
Yo Fukushima ◽  
Marine Tridon ◽  
Delphine Smittarello ◽  
...  

<div> <div> <div> <p>DefVolc is a suite of programs and a web service intended to help the rapid interpretation of InSAR data, acquired on volcanoes at an increased frequency thanks to the various dedicated satellites. Our objective is to help to rapidely inverse volcano displacements, whether these displacements result from fractures (sheet intrusions or faults) or massive magma reservoirs. These sources may have complex geometries, and they may deform simultaneously. Moreover, volcanoes are associated with prominent topographies. This makes the analysis of surface displacements complex. To appropriately analyse the InSAR displacements, we conduct inverse modelling, using 3D elastostatic boundary element models and a neighbourhood optimization algorithm . We simultaneously invert non-linear model parameters (source geometry and location) and linear model parameters (source stress changes), and further assess mean model parameters and confidence intervals. In order to speed up the setting up of inversions, we developed a users friendly graphical interface. In order to accelerate the inversions, they run on clusters. A web server is proposed to registered users in order to run the inversions on University Clermont Auvergne clusters. Because the web server was developped in the framework of the Eurovolc project framework, European volcano observatories are priority users.</p> </div> </div> </div>

SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 689-700 ◽  
Author(s):  
S.. Ameen ◽  
A. Dahi Taleghani

Summary Injectivity loss is a common problem in unconsolidated-sand formations. Injection of water into a poorly cemented granular medium may lead to internal erosion, and consequently formation of preferential flow paths within the medium because of channelization. Channelization in the porous medium might occur when fluid-induced stresses become locally larger than a critical threshold and small grains are dislodged and carried away; hence, porosity and permeability of the medium will evolve along the induced flow paths. Vice versa, flowback during shut-in might carry particles back to the well and cause sand accumulation inside the well, and subsequently loss of injectivity. In most cases, to maintain the injection rate, operators will increase injection pressure and pumping power. The increased injection pressure results in stress changes and possibly further changes in channel patterns around the wellbore. Experimental laboratory studies have confirmed the presence of the transition from uniform Darcy flow to a fingered-pattern flow. To predict these phenomena, a model is needed to fill this gap by predicting the formation of preferential flow paths and their evolution. A model based on the multiphase-volume-fraction concept is used to decompose porosity into mobile and immobile porosities where phases may change spatially, evolve over time, and lead to development of erosional channels depending on injection rates, viscosity, and rock properties. This model will account for both particle release and suspension deposition. By use of this model, a methodology is proposed to derive model parameters from routine injection tests by inverse analysis. The proposed model presents the characteristic behavior of unconsolidated formation during fluid injection and the possible effect of injection parameters on downhole-permeability evolution.


2007 ◽  
Vol 23 (20) ◽  
pp. 2795-2796 ◽  
Author(s):  
M. Ganapathiraju ◽  
C. J. Jursa ◽  
H. A. Karimi ◽  
J. Klein-Seetharaman

2020 ◽  
pp. 636-645
Author(s):  
Hussain Karim Nashoor ◽  
Ebtisam Karim Abdulah

Examination of skewness makes academics more aware of the importance of accurate statistical analysis. Undoubtedly, most phenomena contain a certain percentage of skewness which resulted to the appearance of what is -called "asymmetry" and, consequently, the importance of the skew normal family . The epsilon skew normal distribution ESN (μ, σ, ε) is one of the probability distributions which provide a more flexible model because the skewness parameter provides the possibility to fluctuate from normal to skewed distribution. Theoretically, the estimation of linear regression model parameters, with an average error value that is not zero, is considered a major challenge due to having difficulties, as no explicit formula to calculate these estimates can be obtained. Practically, values for these estimates can be obtained only by referring to numerical methods. This research paper is dedicated to estimate parameters of the Epsilon Skew Normal General Linear Model (ESNGLM) using an adaptive least squares method, as along with the employment of the ordinary least squares method for estimating parameters of the General Linear Model (GLM). In addition, the coefficient of determination was used as a criterion to compare the models’ preference. These methods were applied to real data represented by dollar exchange rates. The Matlab software was applied in this work and the results showed that the ESNGLM represents a satisfactory model. 


2017 ◽  
Vol 6 (3) ◽  
pp. 75
Author(s):  
Tiago V. F. Santana ◽  
Edwin M. M. Ortega ◽  
Gauss M. Cordeiro ◽  
Adriano K. Suzuki

A new regression model based on the exponentiated Weibull with the structure distribution and the structure of the generalized linear model, called the generalized exponentiated Weibull linear model (GEWLM), is proposed. The GEWLM is composed by three important structural parts: the random component, characterized by the distribution of the response variable; the systematic component, which includes the explanatory variables in the model by means of a linear structure; and a link function, which connects the systematic and random parts of the model. Explicit expressions for the logarithm of the likelihood function, score vector and observed and expected information matrices are presented. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. To detect influential observations in the new model, we use diagnostic measures based on the local influence and Bayesian case influence diagnostics. Also, we show that the estimates of the GEWLM are  robust to deal with the presence of outliers in the data. Additionally, to check whether the model supports its assumptions, to detect atypical observations and to verify the goodness-of-fit of the regression model, we define residuals based on the quantile function, and perform a Monte Carlo simulation study to construct confidence bands from the generated envelopes. We apply the new model to a dataset from the insurance area.


2019 ◽  
Vol 36 (6) ◽  
pp. 1757-1764
Author(s):  
Saida Saad Mohamed Mahmoud ◽  
Gennaro Esposito ◽  
Giuseppe Serra ◽  
Federico Fogolari

Abstract Motivation Implicit solvent models play an important role in describing the thermodynamics and the dynamics of biomolecular systems. Key to an efficient use of these models is the computation of generalized Born (GB) radii, which is accomplished by algorithms based on the electrostatics of inhomogeneous dielectric media. The speed and accuracy of such computations are still an issue especially for their intensive use in classical molecular dynamics. Here, we propose an alternative approach that encodes the physics of the phenomena and the chemical structure of the molecules in model parameters which are learned from examples. Results GB radii have been computed using (i) a linear model and (ii) a neural network. The input is the element, the histogram of counts of neighbouring atoms, divided by atom element, within 16 Å. Linear models are ca. 8 times faster than the most widely used reference method and the accuracy is higher with correlation coefficient with the inverse of ‘perfect’ GB radii of 0.94 versus 0.80 of the reference method. Neural networks further improve the accuracy of the predictions with correlation coefficient with ‘perfect’ GB radii of 0.97 and ca. 20% smaller root mean square error. Availability and implementation We provide a C program implementing the computation using the linear model, including the coefficients appropriate for the set of Bondi radii, as Supplementary Material. We also provide a Python implementation of the neural network model with parameter and example files in the Supplementary Material as well. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Katia Lucchesi Cavalca ◽  
Sérgio Junichi Idehara ◽  
Franco Giuseppe Dedini ◽  
Robson Pederiva

Abstract The present paper proposes the use of non linear model updating applying unrestricted optimization method, in order to obtain a methodology, which allows the calibration of mathematical models in rotating systems. An experimental set up for this purpose consists of a symmetric rotor, on a rigid foundation supported by two hidrodynamic cylindrical bearings and with a central disk of considerable mass, working as na unbalancing excitation force. Once the numeric and experimental values are obtained, error vectors are defined, which are the minimization parameters, through the variation of the numeric model parameters. The method presented satisfactory results, as it was able to calibrate the mathematical model, and then to obtain reliable responses for the physical system studied. The research also presents a contribution for the rotating machine desing area as it presents a relatively simple methodology on the updating and revalidation of computacional models for machines and structures.


Author(s):  
Peter Šimurka ◽  
Ján Procháska

Continually increasing requirements on nowadays full scope PSA L1 and L2 as whole, which is multiplied by importance of specific data for all modes of operation of nuclear power plant, highlight role of input data used in PSA quantification process. This fact also emphasizes the role of capability to process all necessary information to analyze all nuclear plant modes by appropriate way. Even if abovementioned aspects are relevant for all parts of nowadays PSAs, their importance is critical for internal hazards including specific fire analysis. Because internal fire analysis forms one of the most challenging PSA tasks, requiring interdisciplinary work including processing and integration of extensive amount of data in such a way that fire analysis results are fully consistent with internal PSA events and can be directly incorporated into PSA project. Application of tailored information system forms one of the ways to speed up analyzing process, enhances manageability and maintainability of particular PSA projects and provides effective reporting mean to document process of work as well as traceable and human readable documentation for customers. Such information system also allows implementing rapid changes in processing input data and reduces the risk of human error. Usage of information systems for modification of input data for Living PSA is invaluable. Transparent highly automatized processing of input data allows the analyst to obtain more accurate and better insight to evaluate aspects of particular fire and its consequences. This paper provides brief overview of VUJE approach and experience in this area. The paper introduces general purpose of database developed for PSA needs containing data for relevant PSA structure system and components as well as information relevant for flood and fire analyses. Paper explains as this basic data source is enhanced by adding several relatively independent tiers to employ all common data for fire PSA purpose. Paper also briefly introduces capability of such system to generate integrated documentation covering all stages of fire analyses, covering all screening stages of fire analysis as well as future plans to enhance this part of work in such a way to be capable to build automatic interface between PSA model and fire database to enable PSA model parameters automatic updating and expansion of fires in combinations of initiating events (for example Fire and seismic event).


Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Steffen Ahlers ◽  
Tobias Hergert ◽  
Andreas Henk

A three dimensional (3D) finite element model is used to study the conditions leading to mechanical decoupling at a salt layer and vertically varying stress fields in salt-bearing sedimentary basins. The study was inspired by observational data from northern Germany showing stress orientations varying up to 90° between the subsalt and the suprasalt layers. Parameter studies address the role of salt viscosity and salt topology on how the plate boundary forces acting at the basement level affect the stresses in the sedimentary cover above the salt layer. Modelling results indicate that mechanical decoupling occurs for dynamic salt viscosities lower than 1021 Pa·s, albeit this value depends on the assumed model parameters. In this case, two independent stress fields coexist above and below the salt layer, differing in tectonic stress regime and/or stress orientation. Thereby, stresses in the subsalt domain are dominated by the shortening applied, whereas in the suprasalt section they are controlled by the local salt topology. For a salt diapir, the orientation of the maximum horizontal stress changes from a circular pattern above to a radial pattern adjacent to the diapir. The study shows the value of geomechanical models for stress prediction in salt-bearing sedimentary basins providing a continuum mechanics–based explanation for the variable stress orientations observed.


2019 ◽  
Vol 47 (W1) ◽  
pp. W151-W157
Author(s):  
Camilo Andres Perez-Romero ◽  
Bram Weytjens ◽  
Dries Decap ◽  
Toon Swings ◽  
Jan Michiels ◽  
...  

Abstract IAMBEE is a web server designed for the Identification of Adaptive Mutations in Bacterial Evolution Experiments (IAMBEE). Input data consist of genotype information obtained from independently evolved clonal populations or strains that show the same adapted behavior (phenotype). To distinguish adaptive from passenger mutations, IAMBEE searches for neighborhoods in an organism-specific interaction network that are recurrently mutated in the adapted populations. This search for recurrently mutated network neighborhoods, as proxies for pathways is driven by additional information on the functional impact of the observed genetic changes and their dynamics during adaptive evolution. In addition, the search explicitly accounts for the differences in mutation rate between the independently evolved populations. Using this approach, IAMBEE allows exploiting parallel evolution to identify adaptive pathways. The web-server is freely available at http://bioinformatics.intec.ugent.be/iambee/ with no login requirement.


Author(s):  
Ireneusz Dominik ◽  
Krzysztof Lalik ◽  
Stanisław Flaga

In the paper two types of numerical models of the self-excited acoustical system are presented. This new type of auto-oscillating system is used for stress change measurement in constructions and rock masses. The essence of the self-excited acoustical system is to use a vibration emitter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which are operating in a closed loop with a positive feedback. This causes the excitation of the system. The change of the velocity of wave propagation, which is associated with the change of the resonance frequency in the system is caused by the deformation of the examined material. Stress changes manifest themselves in small but detectable variations of frequency. The first of the presented models was created on the basis of estimating the model parameters by identification of the sensor–conditioner–amplifier–emitter system. The second mathematical model was delivered from the force–charge equation of the piezoelectric transducers: the sensor and the emitter. The model of the loaded beam, which determined the response of any beam point to the force applied to any other beam point is also presented.


Sign in / Sign up

Export Citation Format

Share Document